Safety Assessment of Polysorbates as Used in Cosmetics

Status: Final Amended Report

Release Date: July 10, 2015 Panel Meeting Date: June 15-16, 2015

The 2015 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer.

ABSTRACT

This is a safety assessment of 80 polysorbates as used in cosmetics. These ingredients mostly function as surfactants in cosmetics. The safety assessment combined the polysorbates reviewed in 3 former safety assessments and polysorbates that had not been assessed for safety into 1 report. The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed relevant data related to these ingredients, including the data in the previous reports. The Panel concluded that polysorbates were safe as cosmetic ingredients in the practices of use and concentration of this safety assessment when formulated to be nonirritating. This conclusion supersedes the conclusions reached in the 3 former safety assessments.

INTRODUCTION

This is a re-review of the available scientific literature and unpublished data relevant to assessing the safety of polysorbates as used in cosmetics; these ingredients mostly function as surfactants in cosmetics (Table 1). This safety assessment combines polysorbates reviewed in 3 previous safety assessments with other polysorbates that have not been reviewed by the CIR Panel into a group of 80 polyethoxylated sorbitan or sorbitol esters of fatty acids (Table 2). These ingredients have a common core structure of sorbitan or sorbitol, etherified with polyethyoxy (PEG) chains, and esterified with fatty acids.

In a safety assessment published in 1984, the CIR Panel concluded that the following 9 polysorbates were safe as used:

Polysorbate 20	Polysorbate 65
Polysorbate 21	Polysorbate 80
Polysorbate 40	Polysorbate 81
Polysorbate 60	Polysorbate 85 ¹
Polysorbate 61	·

Other polysorbates, which are also polyethoxylated sorbitan or sorbitol esters of fatty acids and contain a PEG moiety, have been reviewed by the CIR Panel. In 2000, a safety assessment was published with a safe as used conclusion for the following 33 PEG sorbitan/sorbitol fatty acid esters:

PEG-20 sorbitan cocoate	PEG-40 sorbitan stearate
PEG-40 sorbitan diisostearate	PEG-60 sorbitan stearate
PEG-2 sorbitan isostearate	PEG-20 sorbitan tetraoleate
PEG-5 sorbitan isostearate	PEG-30 sorbitan tetraoleate
PEG-20 sorbitan isostearate	PEG-40 sorbitan tetraoleate
PEG-40 sorbitan lanolate	PEG-60 sorbitan tetraoleate
PEG-75 sorbitan lanolate	PEG-60 sorbitan tetrastearate
PEG-10 sorbitan laurate	PEG-20 sorbitan triisostearate
PEG-40 sorbitan laurate	PEG-160 sorbitan triisostearate
PEG-44 sorbitan laurate	PEG-18 sorbitan trioleate
PEG-75 sorbitan laurate	Sorbeth-40 hexaoleate (previously PEG-40 sorbitol
PEG-80 sorbitan laurate	hexaoleate)
PEG-3 sorbitan oleate	Sorbeth-50 hexaoleate (previously PEG-50 sorbitol
PEG-6 sorbitan oleate	hexaoleate)
PEG-80 sorbitan palmitate	Sorbeth-30 tetraoleate laurate (previously PEG-30
PEG-40 sorbitan perisostearate	sorbitol tetraoleate laurate)
PEG-40 sorbitan peroleate	Sorbeth-60 tetrastearate (previously PEG-60 sorbitol
PEG-3 sorbitan stearate	tetrastearate) ²
PEG-6 sorbitan stearate	

There were 2 ingredients that were included in the 2000 report, but were not listed in the *International Cosmetic Ingredient Dictionary and Handbook*³ (*Dictionary*) at the time of the original review, and are not listed as cosmetic ingredients in the current *Dictionary*.⁴ One is PEG-18 sorbitan trioleate, which has 1 use listed in the 2015 Food and Drug Administration's (FDA) Voluntary Cosmetic Registration Program (VCRP)⁵ and is therefore included in this safety assessment. However, the other, PEG-20 sorbitan tetraoleate, has no uses listed in the VCRP, so is not included in this safety assessment.

In 2001, a safety assessment was published with a safe as used conclusion for the following sorbitan beeswaxes:

Sorbeth-6 beeswax (previously PEG-6 sorbitan beeswax) Sorbeth-8 beeswax (previously PEG-8 sorbitan beeswax) Sorbeth-20 beeswax (previously PEG-20 sorbitan beeswax)⁶ At the time of the safety assessment on these sorbeth beeswaxes, the Panel had recommended that cosmetic formulations that included PEGs (specifically PEG-6, PEG-20, and PEG-75) not be used on damaged skin due to the possible connection between the use of PEGs on burn patients and renal toxicity. Since then, PEGs have been re-reviewed and the additional data demonstrated minimal dermal penetration of low-molecular weight PEGs. The amount of PEGs that would penetrate the stratum corneum barrier, even if damaged, from the use of cosmetics was well below the no observable effects level. Therefore, the Panel has removed the caveat that PEGs should not be used on damaged skin.⁷

The following 35 ingredients from the *Dictionary*, which are also polyethoxylated sorbitan or sorbitol esters of fatty acids, have not been reviewed by the Panel previously and are included in this group because of their common core structure of sorbitan or sorbitol etherified with PEG chains and esterified with fatty acids:

PEG-20 sorbitan oleate PEG-40 sorbitan oleate PEG-4 sorbitan stearate PEG-4 sorbitan triisostearate PEG-2 sorbitan trioleate PEG-3 sorbitan tristearate Sorbeth-2 beeswax

Sorbeth-2 cocoate

Sorbeth-2 hexacaprylate/caprate

Sorbeth-12 hexacocoate
Sorbeth-2 hexaisostearate
Sorbeth-2 hexalaurate
Sorbeth-2 hexaleate
Sorbeth-6 hexastearate
Sorbeth-150 hexastearate
Sorbeth-3 isostearate
Sorbeth-6 laurate

Sorbeth-2/oleate/dimer dilinoleate crosspolymer

Sorbeth-20 pentaisostearate Sorbeth-30 pentaisostearate Sorbeth-40 pentaisostearate Sorbeth-50 pentaisostearate Sorbeth-40 pentaoleate Sorbeth-20 tetraisostearate Sorbeth-30 tetraisostearate Sorbeth-40 tetraisostearate Sorbeth-50 tetraisostearate Sorbeth-4 tetraoleate Sorbeth-6 tetraoleate Sorbeth-30 tetraoleate Sorbeth-40 tetraoleate Sorbeth-60 tetraoleate Sorbeth-3 tristearate Sorbeth-160 tristearate

Sorbeth-450 tristearate⁴

The VCRP reported a single use for PEG-30 sorbitan beeswax, which is not listed in the *Dictionary*. ^{4,5} Since there is a use reported, this ingredient is included in this safety assessment.

CIR has conducted safety assessments of the acids and related chemical structure moieties of the ingredients in this safety assessment (Table 2). The Panel concluded that beeswax, coconut acid, isostearic acid, lanolin acid, lauric acid, myristic acid, oleic acid, stearic acid, and multiple stearates were safe as used. An array of alkyl esters and numerous PEGs were also assessed to be safe as used. Sorbitan esters have been reviewed, and safe as used conclusions were reached. Sorbitan esters have been reviewed, and safe as used conclusions were

Much of the new data included in this safety assessment were found on the European Chemicals Agency (ECHA) website. 22-24 The ECHA website provides robust summaries of information generated by industry, and it is those summary data that are reported in this safety assessment when ECHA is cited. Some of this data are for sorbitan monolaurate, ethoxylated, sorbitan monostearate, ethoxylated, and sorbitan monoleate, ethoxylated; these 3 chemicals fit the general definition of several of the ingredients in this report with the same CAS No. (ie, polysorbate 21, PEG-10 sorbitan laurate, PEG-40 sorbitan laurate, polysorbate 20, PEG-44 sorbitan laurate, PEG-75 sorbitan laurate, and PEG-80 sorbitan laurate all have the CAS No. 9005-64-5). It is expected that data under these chemicals names are for one or some mixture of the ingredients with that CAS No. and are useful for read across information.

CHEMISTRY

Definition and Method of Manufacture

The ingredients in this report (several of which are often referred to by the commercial trade name of Tween in the literature) are polyethoxylated sorbitan or sorbitol esters of fatty acids. Each ingredient has a common core structure of sorbitan or sorbitol, etherified with PEG chains, and esterified with fatty acids (Figure 1). Sorbitan is related to sorbitol as the simple dehydration product.

Figure 1. Polysorbates, sorbitan ("polysorbate #" or "PEG-x sorbitan nomenclature) and sorbitol ("sorbeth-#" nomenclature) derivatives.

While those ingredients with the nomenclature "polysorbate #" form sorbitan by dehydration of sorbitol during the above reactions (which is consequently ethoxylated and esterified), those ingredients herein with the nomenclature "PEG-x sorbitan fatty ester" are the product of the ethoxylation of a preformed sorbitan ester. Regardless of the nomenclature, the ingredients under these two nomenclature schemes are related as polyethoxylated sorbitan esters. The ingredients with the nomenclature "sorbeth-#" are not the product of dehydration, but are the ethoxylated and esterified products of sorbitol. While these ingredients are predominately either sorbitan derivatives or sorbitol derivatives, each may be mixtures resulting from some dehydration, isomerization, degree of ethoxylation, or degree of esterification. Accordingly, the ingredients in this report are closely related in that they have similar chemical structures and potential metabolism products (eg, via esterases known to be present in the skin). It should be noted that the number in ingredients with the nomenclature "polysorbate #" has no relationship to the size of the molecule but to the associated fatty acid from which the ingredient is derived (20, laurate; 40, palmitate; 60, stearate; 80, oleate).

Presented here are 2 possible routes for the synthesis of polysorbates. ²⁵ In the first, sorbitol is esterified with fatty acids or their anhydrides, which reaction is typically carried out with acid catalysis at 130-180°C. At the temperature required for the esterification, water is eliminated from sorbitol to form 3 possible isomers of sorbitan and (with elimination of another water molecule) isosorbide. These dehydration products react with a fatty acid to form corresponding sorbitan esters. These products, which are known as "spans", are ethoxylated to produce polysorbates.

In the other common method of manufacture, sorbitol is reacted with ethylene oxide and a basic catalyst at 200-250°C. Under these conditions, sorbitol is isomerized as above. Addition of ethylene oxide yields ethoxylated products, which are called carbowaxes, and which are subsequently esterified with fatty acids to produce oligomers of polyoxyethylene sorbitan esters (aka polysorbates).

Chemical and Physical Properties

Polysorbates are amphiphilic molecules, which are fatty esters of polyoxyethylated sorbitan or sorbitol.²⁵ The polysorbates are, for the most part, viscous liquids to waxy solids that range in color from yellow to orange to tan (Table 3).¹ They possess a faint, characteristic odor and a warm, somewhat bitter taste. The reported physical and chemical properties of generic sorbitan monolaurate, ethoxylated and sorbitan monostearate, ethoxylated are provided in Table 4.

Since the fatty acids used in the production of cosmetic ingredients frequently contain fatty acids other than the principal acid named (ie, a mixture), each of the polysorbates may contain a complex mixture of fatty acid moieties. Table 5 provides an example of the approximate ester content of polysorbate 20, 21, 40, 60, and 80. Polysorbate 21 is reported to be 30%-80% monoesters, <50% diesters, and <20% triesters. Sorbitan monolaurate is reported to be a mixture of esters of different lengths, with the highest percentage being C12, at 40%-60%.

Impurities

During the manufacturing process, the polysorbates are steam-stripped to remove unwanted water-soluble by-products such as 1,4-dioxane. Since PEGs are the condensation products of ethylene oxide and water, with the chain length

controlled by the number of moles of ethylene oxide that are polymerized, they may contain trace amounts of 1,4-dioxane, a by-product of ethoxylation. 1,4-Dioxane is a known animal carcinogen.²⁷ The FDA has been periodically monitoring the levels of 1,4-dioxane in cosmetic products, and the cosmetic industry reported that it is aware that 1,4-dioxane may be an impurity in PEGs and, thus, uses additional purification steps to limit it in these ingredients before blending into cosmetic formulations. 28,29

USE Cosmetic

The Panel assesses the safety of cosmetic ingredients based on the expected use of these ingredients in cosmetics. The Panel reviews data received from the FDA and the cosmetics industry to determine the expected cosmetic use. The data received from the FDA are collected from manufacturers on the use of individual ingredients in cosmetics, by cosmetic product category, through the FDA VCRP, and the data from the cosmetic industry are submitted in response to a survey of the maximum reported use concentrations, by category, conducted by the Personal Care Products Council (Council).

In 2015, the polysorbates included in the current safety assessment with the highest number of uses reported were polysorbate 20 at 3013 (an increase from 770 in 1998), polysorbate 60 at 1589 (an increase from 332 in 1998), and polysorbate 80 at 932 (an increase from 231 in 1998; Table 6). 1,2,5,6,14 Almost all of the previously reviewed ingredients had increases in the number of reported uses. All of the ingredients not previously reviewed had less than 15 reported uses (Table

In the survey conducted by the Council in 2014 (2015 for PEG-4 sorbitan stearate) of the maximum use concentrations for ingredients in this group, the highest concentrations of use were reported for polysorbate 20 at 19.6% in bath soaps and detergents (a decrease from >50% in 1984), polysorbate 80 at 18.1% in paste masks and mud packs (a decrease from up to 25% in 1984), polysorbate 81 at 25.6% in skin cleansing products (an increase from up to 5% in 1984), and polysorbate 85 at 21.9% skin cleansing products (a decrease from >50% in 1984). 1,2,30-32 The highest maximum concentration of use for leave-on products was 11.9% polysorbate 80 in perfumes.

In the 2000 published report, the only concentration of use data that were provided was the following: "...PEG-60 sorbitan tetraoleate, PEG-40 sorbitan tetraoleate, and PEG-160 sorbitan triisostearate are used in cosmetics at concentrations of 0.5% to 10%...". Since the data from the 2000 report are limited, the concentration of use data from the 1984 report were provided in Table 6 to give a better historical perspective.

PEG-18 sorbitan trioleate is not listed as a cosmetic ingredient in the *Dictionary*. However, the VCRP reported 1 use in a moisturizer, which is a decrease from 10 uses reported in 1998.⁵ PEG-30 sorbitan beeswax is also not listed in the Dictionary, but is reported to have 1 use in mascara by the VCRP.

The VCRP also reported single uses for PEG-20 sorbitan laurate (used in 1 other personal cleanliness product) and PEG-20 sorbitan stearate (used in 1 night skin product). However, these names are not listed in the Dictionary as INCI (International Nomenclature of Cosmetic Ingredients) names or technical terms. ⁴ The Council has reported that PEG-20 sorbitan laurate is another term for polysorbate 20 and PEG-20 sorbitan stearate is another term for polysorbate 60.³³ Since it cannot be confirmed that the reporting companies intended to refer to polysorbate 20 and polysorbate 60, this use information on these 2 ingredients are reported separately.

The 41 ingredients with no reported uses or concentrations of use are listed in Table 8.

In some cases, reports of uses were received in the VCRP, but no concentration of use data were available. 5,31 For example, PEG-3 sorbitan stearate was reported to be used in 3 formulations, but no use concentration data were reported. In other cases, no reported uses were received in the VCRP, however a use concentration was provided in the industry survey. For example, PEG-40 sorbitan laurate was not reported in the VCRP to be in use, but the industry survey indicated that it is used in leave-on formulations at up to 2% (skin care preparations) and rinse-off formulations up to 0.25% (shampoos and hair dyes and colors). It should be presumed that PEG-40 sorbitan laurate was used in at least 3 cosmetic formulations.

Several of these polysorbate ingredients are used at concentrations up to 5.8% in cosmetic products that may be ingested, in cosmetics used around the eyes at concentrations up to 11%, or in baby products at concentrations up to 12.6%.30,31

Polysorbates were reported to be used in cosmetic sprays, including aerosol and pump hair sprays, spray deodorants, spray body and hand products, and spray moisturizing products, and could possibly be inhaled. The highest concentrations of use were reported to be 11.9% polysorbate 80 in perfumes and polysorbate 20 in spray deodorants at up to 4%. In practice, 95% to 99% of the droplets/particles released from cosmetic sprays have aerodynamic equivalent diameters >10 µm, with propellant sprays yielding a greater fraction of droplets/particles below 10 µm compared with pump sprays. 34-37 Therefore, most droplets/particles incidentally inhaled from cosmetic sprays would be deposited in the nasopharyngeal and bronchial regions and would not be respirable (ie, they would not enter the lungs) to any appreciable amount.^{34,36} There is some evidence indicating that deodorant spray products can release substantially larger fractions of particulates having aerodynamic equivalent diameters in the range considered to be respirable.³⁴ However, the information is not sufficient to determine whether significantly greater lung exposures result from the use of deodorant sprays, compared to other cosmetic sprays.

All of the polysorbates named in this report are listed in the European Union inventory of cosmetic ingredients.³⁸

Non-Cosmetic

The Joint Food and Agriculture Organization (FAO)/World Health Organization (WHO) Expert Committee on Food Additives (JECFA) estimated the acceptable daily intake for humans to be 0-25 mg/kg/d for total polyoxyethylene (20) sorbitan esters.³⁹ The Science Committee on Food (SCF) issued a group acceptable daily intake (ADI) of 10 mg/kg/d for polysorbate 80, polyoxyethylene sorbitan mono-esters of lauric and palmitic acids, and the mono- and the tri-ester of stearic acids.⁴⁰

The largest food sources of polysorbates are confectionery, ices, desserts, fine bakery wares, milk analogues, emulsified sauces, chewing gums, and fat emulsions for baking.²⁵

The polysorbates are used in the drug, food, and animal feed industries; several have been approved by the FDA as direct and indirect food additives for human consumption with certain restrictions (Table 9). The FDA drug inactive ingredients database lists polysorbate 80 and polysorbate 20 as being used in nasal metered sprays at concentrations of 10% and 2.5%, respectively.⁴¹

TOXICOKINETICS

Following oral administration of polysorbate 20 to rats, ester bonds of polysorbates are hydrolyzed within the digestive tract by pancreatic lipase. Free fatty acids were absorbed from the digestive tract and oxidized and excreted, mainly as carbon dioxide in exhaled breath. No migration of the polyoxyethylene sorbitan into the thymus lymph nodes has been demonstrated. No sex difference has been detected in the disposition of polysorbates in rats.

Following oral ingestion of polysorbate 20 in humans, 90% or more of the administered substance was excreted in the feces as metabolites, with the polyoxyethylene sorbitan structure maintained, and 2%-3% of these metabolites were excreted in the urine.²⁴

Penetration Enhancement

Polysorbate 20, polysorbate 65, and polysorbate 80 enhanced the dermal penetration of albuterol sulfate through hairless mouse skin in assays using Franz cells (Table 10). 42

Cytotoxicity

POLYSORBATE 20

In a series of "cyto/genotoxicity" assays described below, polysorbate 20 induced apoptosis in human umbilical vein endothelial cells (HUVEC) and A549 lung cancer cells, which was manifested by chromatin fragmentation and DNA cleavage. 43

In an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, there was a dose- and time-dependent reduction in cell growth for both the HUVEC and A549 cells, with IC $_{50}$ s of approximately 0.3 and 0.4 μ L/mL polysorbate 20, respectively. There was >90% cell death observed after treatment with 2 μ L/mL, and the greatest cell death was observed in the highest test group. For the assay, the cells were incubated with various concentrations of polysorbate 20 (2, 4, 6, 8, or 10 μ L/mL) for 24, 48, and 72 h, and then washed.

In a DAPI (4',6-diamidino-2-phenylindole) staining assay, morphological changes and fragmentation in the chromatin and DNA rings within the nucleus were observed in the polysorbate-treated cells of both cell lines, but morphology was unaltered in untreated cells. Polysorbate 20-treated cells showed chromatin and DNA fragmentation as high as the positive control of 5% dimethyl sulfoxide (DMSO). For the assay, the cells were treated with polysorbates 20 (4 μ L/mL) for various durations (not provided), then fixed and stained with DAPI.

In a DNA fragmentation assay analyzed by agarose gel electrophoresis, polysorbate 20 (concentration not clear) induced apoptosis, as evidenced by DNA fragmentation after incubation for 24 h. The gel showed the formation of DNA ladders in cells of both treated lines.

An alkaline comet assay showed that polysorbate 20 (2 μ L/mL)-treated A549 cells exhibited increased DNA cleavages compared to untreated cells and similar DNA cleavages to the positive control, hydrogen peroxide (200 mM)-treated cells. Only A549 cells were used in this assay; HUVEC cells were not used.

When polysorbate 20 (2 μ L/mL)-treated A549 cells were analyzed with a fluorescein isothiocyanate (FITC)-labeled annexin V apoptosis assay and flow cytometry analysis was used to estimate early and late apoptosis, the results were similar to the results of the DAPI staining assay. Almost all of the treated cells were in early and late stages of apoptosis after 24 h; less than half of DMSO-treated control cells were in early and late stages of apoptosis for the same period of exposure. Only A549 cells were used in this assay; HUVEC cells were not used.

TOXICOLOGICAL STUDIES Acute Toxicity

Oral - Non-Human

POLYSORBATE 81

The oral LD₅₀ of polysorbate 81 was reported to be >20 000 mg/kg for rats (n=11).²³

Oral - Human

SORBITAN MONOSTEARATE, ETHOXYLATED

No toxic effects were observed in human subjects (n=6) orally administered sorbitan monostearate, ethoxylated (20 g).²⁴ The amount of gastric acid was slightly reduced. It was concluded that sorbitan monostearate, ethoxylated was not acutely toxic when orally administered to humans.

Dermal - Non-Human

SORBITAN MONOSTEARATE, ETHOXYLATED

The acute dermal LD_{50} of sorbitan monostearate, ethoxylated in Wistar albino rats (n=10/sex) was reported to be \geq 2000 mg/kg.²⁴

Inhalation – Non-Human

SORBITAN MONOLARUATE, ETHOXYLATED

The inhalation LC₅₀ was reported to be 5.1 mg/L air for sorbitan monolaurate, ethoxylated administered to Crl:Wl(Han) rats (n=5) for 4 h in a nose-only apparatus.²² No clinical signs of systemic toxicity were observed up to the end of the 14-day observation period. No abnormalities were observed at macroscopic post mortem examination of the rats.

Intravenous – Non-Human

POLYSORBATE 20

The intravenous LD_{50} for polysorbate 20 in mice was reported to be 1420 mg/kg.²²

Repeated Dose Toxicity

In a survey of 4 laboratories of the historical use of vehicles for in vivo experiments, the highest no-observed-adverse-effect levels (NOAEL) for various routes of administration were assembled (Table 11). The highest oral NOAELs for polysorbate 20 were 250 and 500 mg/kg/d for 1 month and 90 days in rats, respectively, and 10 mg/kg/d for 1 month in mice. For polysorbate 80, the highest oral NOAEL for 90 days in dogs was 5 mL/kg/d, and for 4 weeks in rats was 5 mL/kg/d. The NOAEL for intranasal administration of polysorbates 80 for 3 days to mice was 10 μ L/nostril/d at 0.2%.

Oral - Non-Human

POLYSORBATE 20, 40, 60, and 80

In a 22-month feeding study, the NOAEL of polysorbate 20 in male C57BL/6 Jax mice was 14285.71 mg/kg/d (10% in feed). Decreased hematologic values were observed but not specified. No characteristic morphologic anemia was observed. The test substance was administered in the feed at 5% or 10% polysorbate 20. No further details were provided.

There were no adverse effects or mortalities related to polysorbate 80 (0.005, 0.05, or 0.15 g/kg/d) when administered by gavage to Sprague-Dawley rats (n=5) for 5 days. There were no clinical signs and no significant findings at necropsy. Serum glucose levels were decreased and serum sodium levels increased at all concentration tested, as well as decreases in uric acid in the mid- and high-dose groups. The high-dose group exhibited a modest reduction in serum calcium levels.

There were no adverse effects or mortalities reported when Sprague-Dawley rats (n=6/sex) were orally administered polysorbate 80 (148, 740, or 3700 mg/kg/d in saline) for 28 days after 28 days of a high-fat diet.⁴⁶ It was not clear if the rats continued on the high-fat diet during treatment with polysorbate 80.

In the same study, there were no adverse effects or mortalities reported when C57BL/6J mice (n=6/sex) were orally administered polysorbates 80 (400, 1600, or 6400 mg/kg/d in saline) for 28 days after 28 days of a high-fat diet. In additional studies, there were no adverse effects or mortalities reported when the same strain of mice (n=5/sex) were orally administered polysorbate 20, polysorbate 40, or polysorbate 60 (1600 mg/kg/d in saline) for 28 days, also after 28 days of a high-fat diet. It was not clear if the mice continued on the high-fat diet during treatment with the polysorbates.

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

POLYSORBATE 60

The teratogenic and reproductive NOAEL was reported to be 7693 mg/kg/d when polysorbate 60 (0, 0.1%, 1.0% or 10% in feed; 0, 99 mg/kg, 960 mg/kg, 7693 mg/kg) was administered to pregnant Wistar rats on gestations days 7-14. There were no effects by polysorbate 60 on the number, sex ratio, and body weights of live fetuses. There were no differences between the polysorbate 60-treated and control groups observed in the numbers of resorptions, dead fetuses and live fetuses per litter, the sex ratio of live fetuses, and the fetal body weight of both sexes. External, skeletal, and internal examinations of the fetuses revealed no evidence of teratogenesis. It was concluded that polysorbate 60 had no harmful effects on the prenatal development of the rat offspring.

POLYSORBATE 80

In a reproductive and developmental study where polysorbate 80 (500 and 5000 mg/kg/d in distilled water; 5 mL) was administered by gavage to Crl:CD BR VAF/PlusTM outbred albino rats (n=25) on gestation days 6-15, the maternal and

the developmental NOAELs were reported to be >5000 mg/kg/d.²³ The control group was administered 5 mL/kg distilled water. No maternal mortalities or treatment-related clinical signs of toxicity were observed. There were no effects on weight gain, organ weights (except non-adverse increased relative liver weights), and feed and water consumption observed. There were no differences in the number of corpora lutea per dam, number of implantations per litter, percent preimplantation loss per litter, percent resorptions per litter, and percent litters with resorptions. No adverse fetal effects were observed, including growth, viability, or development of the fetuses. There were no observed differences in malformations between treatment groups and controls.²³

GENOTOXICITY

In Vitro

POLYSORBATE 80

Polysorbate 80 was not genotoxic to *Salmonella typhimurium* (strains TA98, TA100, TA1535, and TA1537) at up to 10 000 μg/plate (in distilled water) with and without metabolic activation.²³ The controls had the expected results.

Polysorbate 80 was not genotoxic to *S. typhimurium* (strains TA1535, TA1537, TA98 and TA100) and *Escherichia coli* (strain WP2 uvr A) at up to 5000 μg/plate (in ethanol) with and without metabolic activation.²³ The controls had the expected results.

SORBITAN MONOLAURATE, ETHOXYLATED

Sorbitan monolaurate, ethoxylated was not mutagenic, with or without metabolic activation, in an Ames assay using *S. typhimurium* (strains TA98, TA100, TA1535, and TA1537) and *E. coli* (strain WP2 uvr A) in 3 separate experiments.²² In experiment 1, *S. typhimurium* (strains TA98, TA1535, TA1537) was tested at 10-3330 μg/plate in ethanol; and *S. typhimurium* (strain TA100) and *E. coli* were also tested at 3 and 5000 μg/plate with and without metabolic activation. In experiment 2, *S. typhimurium* (strains TA98 and TA1535) was tested at 33-5000 μg/plate in ethanol with and without metabolic activation. In experiment 3, all strains were tested again at 33-5000 μg/plate in ethanol with and without metabolic activation. Controls had the expected results.

In a chromosomal aberration assay using human lymphocytes, sorbitan monolaurate, ethoxylated was not genotoxic up to $100 \mu g/mL$ in ethanol, with and without metabolic activation, but was cytotoxic at $300 \mu g/mL$. Assays were run for 3, 24, and 48 h. Controls had the expected results.

In 2 mammalian cell gene mutation assays using mouse lymphoma L5178Y cells, sorbitan monolaurate, ethoxylated was not found to be genotoxic. In the first experiment, the cells were tested for 3 h at 0.3-275 μ g/mL without metabolic activation and at 0.3-300 μ g/mL with metabolic activation in ethanol. In the second experiment, the cells were tested for 3 h at: 0.3-150 μ g/mL without metabolic activation and at 0.3-350 μ g/mL with metabolic activation in ethanol. Controls had the expected results.

SORBITAN MONOOLEATE, ETHOXYLATED

Sorbitan monooleate, ethoxylated produced ambiguous results in a chromosome aberration assay using Chinese hamster ovary (CHO; CHO-W-B1) cells. The number and percentages of aberrations did not change in a concentration-dependent manner. Sorbitan monooleate, ethoxylated was tested at 300-1600 μ g/mL without metabolic activation and 100-1000 μ g/mL in DMSO. The positive controls were mitomycin and cyclophosphamide, which elicited the expected results.

Sorbitan monooleate, ethoxylated was not genotoxic in a chromosome aberration assay using CHO (CHO-W-B1) cells. The sorbitan monooleate, ethoxylated was tested at 300-1600 μ g/mL without metabolic activation and at 16-500 μ g/mL in DMSO. The positive controls were mitomycin and cyclophosphamide. The controls elicited the expected results.

SORBITAN MONOSTEARATE, ETHOXYLATED

Sorbitan monostearate, ethoxylated (concentration and vehicle were not specified) was not mutagenic in a bacterial gene mutation assay using *S. typhimurium* (strain TA 98) with metabolic activation.²⁴

CARCINOGENICITY

The Panel considered the carcinogenicity data presented in the previous safety assessments of polysorbates. ^{1,2,6} No new carcinogenicity data on polysorbates were found in the published literature, nor were unpublished data provided.

IRRITATION AND SENSITIZATION

Irritation

Summaries of dermal and ocular studies are provided in Tables 12 and 13, respectively.

Dermal – Non-Human

Polysorbate 60 was a moderate irritant at 5%, and skin necrosis occurred at 10%, when administered to rabbits for 30 days.²⁴ In another study, polysorbate 60 was not an irritant at 15% but a mild irritant in rabbits at 100%. Local inflammation was observed in mouse skin when polysorbate 60 was administered in a long-term study.

Sorbitan monolaurate, ethoxylated (100%; 0.5mL) resulted in a Draize score of 0.89 out of 4 when administered to rabbits. 22

When sorbitan monostearate, ethoxylated was dermally administered to rabbits for 30 days, the test substance caused necrosis of the skin at 10% but only moderate irritation at 5%. Administration of sorbitan monostearate, ethoxylated (100%) for 60 days did not cause irritation in rabbits. Sorbitan monostearate, ethoxylated (100%) did not produce any skin reaction when administered to the shaved backs of rabbits.

Dermal – Human

In human irritation studies, polysorbate 60 (1%), polysorbate 80 (100%), and sorbitan monostearate, ethoxylated (25%) were not dermally irritating. ^{24,48-50} Polysorbate 60 (100%) caused urticaria on the foreheads of subjects, but not on the dorsal and arm skin.

Ocular - Non-Human

Tests of polysorbate 20 (10%) and polysorbate 81 (up to 100%) showed that these ingredients were not ocular irritants in rabbits.⁵¹⁻⁵³ Sorbitan monostearate, ethoxylated (0.1 g in water) and sorbitan monolaurate, ethoxylated (100%; 0.1 mL) were not ocular irritants to rabbits.^{22,23}

Ocular - In Vitro

POLYSORBATE 20

In vitro ocular irritation tests of polysorbate 20 had mixed results. EpiOcular tests, a red blood cell hemolysis assay, and a k562 cell assay predicted polysorbate 20 to be a non- or minimal ocular irritant at 2% and 100%. Polysorbate 20 was predicted to be an ocular irritant in a short time exposure (STE) assay using SIRC cells, Hen's Egg test-Chorioallantoic Membrane (HET-CAM) assays, and Bovine Corneal Opacity and Permeability (BCOP) assay. 4

Sensitization

Non-Human

POLYSORBATE 81

Polysorbate 81 (2% or 4% in corn oil) was not sensitizing to female Dunkin-Hartley guinea pigs (n=10) when the guinea pigs were challenged at 100% (0.5 mL). 22,23 The induction was a single intradermal injection followed 48 h later with an epicutaneous induction; the epicutaneous challenge was administered 21 days after second induction. There were no signs of sensitization up to 72 h after the challenge. The positive control, α -hexyl cinnamic acid (20%), elicited the expected results.

SORBITAN MONOLAURATES, ETHOXYLATED

In a local lymph node assay of sorbitan monolaurates, ethoxylated (25%, 50% and 100% in acetone/olive oil [4:1 v/v]; 25 μ L) using female CBA mice (n=5), the stimulation indexes (SI) were calculated to be 1.9, 6.0 and 5.0, respectively. The test substance was considered sensitizing. The authors noted that the response of the 100% group did not follow the expected dose-response relationship, which they also noted was common in this kind of study. The response might be less severe due to differences in skin penetration (no vehicle present) or viscosity. The estimated concentration of polysorbates that would give an SI of 3 was calculated to be 34%. The positive control, hexyl cinnamic aldehyde, had the expected results.

Human

POLYSORBATE 81

In a human patch test (n=50), polysorbate 81 (100%) was not sensitizing.²³ There were no signs of irritation or sensitization observed in any subject. The test material was administered under a single occluded patch for 3 days. After 7 days, challenge patches were administered for 72 h.

In a human patch test (n=10), polysorbate 81 (100%) was not sensitizing.²³ There were no signs of irritation or sensitization observed in any subject. The test material was administered under a single occluded patch for 5 days. After 10 days, challenge patches were administered for 48 h.

In a human patch test (n=10), polysorbate 81 (12%; vehicle not specified) was not sensitizing.²³ There were no signs of irritation or sensitization observed in any subject. The test material was administered under a single occluded patch for 5 days. After 10 days, challenge patches were administered for 48 h.

SUMMARY

This is a re-review of the safety of polysorbates as used in cosmetics. Safety assessments of various polysorbates were published in 1984, 2000, and 2001. This safety assessment combines the ingredients from these safety assessments along with additional polysorbate ingredients have been identified for a total of 80 ingredients. All of these polysorbate ingredients are related in that they have a common core structure of sorbitan or sorbitol etherified with PEG chains, and esterified with fatty acids.

The highest number of uses in 2015 were reported for polysorbate 20 at 3013 (an increase from 770 in 1998), polysorbate 60 at 1589 (an increase from 332 in 1998), and polysorbates 80 at 932 (an increase from 231 in 1998). Almost

all of the previously reviewed ingredients had increases in the number of reported uses. The highest maximum concentrations of use in 2014 were reported for polysorbate 20 at 19.6% (a decrease from >50% in 1984), polysorbate 80 at 18.1% (a decrease from up to 25% in 1984), polysorbate 81 at 25.6% (an increase from up to 5% in 1984), and polysorbate 85 at 21.9% (a decrease from >50% in 1984) in rinse-off products. The highest maximum concentration of use for leave-on products was 11.9% polysorbate 80 in perfumes.

Polysorbate 20, polysorbate 65, and polysorbate 80 enhanced the dermal penetration of albuterol sulfate through hairless mouse skin.

In a series of "cyto/genotoxicity" assays (MTT, DAPI, DNA fragmentation, alkaline comet, and FITC-labeled annexin V apoptosis assays), polysorbate 20 induced apoptosis in HUVEC and A549 lung cancer cells, which was manifested by chromatin fragmentation and DNA.

The oral LD_{50} of polysorbate 81 was reported to be >20 000 mg/kg for rats. The acute dermal LD_{50} of sorbitan monostearate, ethoxylated in rats was reported to be >2000 mg/kg. The inhalation LC_{50} was reported to be 5.1 mg/L air for sorbitan monolaurate, ethoxylated administered to rats for 4 h. The intravenous LD_{50} for mice was reported to be 1420 mg/kg for polysorbate 20.

In a survey of 4 laboratories of the historical use of vehicles for in vivo experiments, the highest NOAEL of various routes of administration were assembled. The highest oral NOAELs for polysorbate 20 were 250 and 500 mg/kg/d for 1 month and 90 days in rats, respectively, and 10 mg/kg/d for 1 month in mice. For polysorbate 80, the highest oral NOAEL for 90 days in dogs was 5 mL/kg/d, and for 4 weeks in rats was 5 mL/kg/d. The NOAEL for intranasal administration of polysorbates 80 for 3 days to mice was 10 μ L/nostril/d at 0.2%.

There were no adverse effects or mortalities related to polysorbate 80 (up to 0.15 g/kg) when administered by gavage to rats for 5 days or in rats orally administered polysorbate 80 (up to 3700 mg/kg/d) for 28 days. There were no adverse effects observed in mice orally administered polysorbate 80 (up to 6400 mg/kg/d), or polysorbate 20, polysorbate 40, or polysorbate 60 (1600 mg/kg/d) for 28 days.

The teratogenic and reproductive NOAEL of polysorbate 60 was reported to be 7693 mg/kg/d (ie, the highest dose tested) when administered to pregnant rats on gestations days 7-14 in feed. In a reproductive and developmental study where polysorbate 80 was administered by gavage to rats on gestation days 6-15, the maternal and the developmental NOAELs were reported to be >5000 mg/kg/d.

Polysorbate 80 was not genotoxic to *S. typhimurium*, up to 10 000 μ g/plate, and *E. coli*, up to 5000 μ g/plate, with and without metabolic activation.

Sorbitan monolaurate, ethoxylated was not mutagenic in an Ames assay using *S. typhimurium* up to $5000 \,\mu\text{g/plate}$. In a chromosomal aberration assay using human lymphocytes, sorbitan monolaurate, ethoxylated was not genotoxic up to 100 $\,\mu\text{g/mL}$ but was cytotoxic at 300 $\,\mu\text{g/mL}$. In 2 mammalian cell gene mutation assays using mouse lymphoma L5178Y cells, sorbitan monolaurate, ethoxylated was not found to be genotoxic up to 275 $\,\mu\text{g/mL}$ without metabolic activation and up to 300 $\,\mu\text{g/mL}$ with metabolic activation. Sorbitan monooleate, ethoxylated produced ambiguous results in a chromosome aberration assay using CHO cells, but was not genotoxic in a second chromosome aberration assay also using CHO cells.

In a 30-day skin-painting study of polysorbate 60 in rabbits, there was moderate irritation observed at 5% and skin necrosis at 10%. In a study in rabbits, there were no dermal effects from a 15% aqueous solution of polysorbate 60 administered for 60 consecutive days; there was mild irritation after administration of an undiluted solution. Local inflammation also occurred after long-term (time not specified) administration of an undiluted polysorbate 60 solution to mouse skin.

Sorbitan monolaurate, ethoxylated at 100% had a Draize score of 0.89 out of 4 when dermally administered to rabbits. When sorbitan monostearate, ethoxylated was dermally administered to rabbits for 30 days, the test substance caused necrosis of the skin at 10% but only moderate irritation at 5%. Administration of sorbitan monostearate, ethoxylated at 100% for 60 days did not cause irritation in rabbits. Sorbitan monostearate, ethoxylated at 100% did not produce any skin reaction when administered to the shaved backs of rabbits.

In a clinical test, polysorbate 60 at 100%, polysorbate 80 at 100%, and sorbitan monostearate, ethoxylated at 25% were not dermally irritating.

In vivo tests of polysorbate 20 (10%) and polysorbate 81 (up to 100%) showed that these ingredients were not ocular irritants. In vitro prediction tests gave mixed results. EpiOcular tests, a red blood cell hemolysis assay, and a k562 cell assay predicted polysorbate 20 to be a non- or minimal ocular irritant at 2% and 100%. STE at 5%, HET-CAM at 100%, and BCOP at 100% predicted that polysorbate 20 would be a mild to severe ocular irritant.

Polysorbate 81 up to 4% was not sensitizing to guinea pigs when challenged at 100% for 21 days. Polysorbate 81 at 100% was not sensitizing in human patch tests.

DISCUSSION

This is a re-review of polysorbates from 3 previous safety assessments that have been combined, along with similar polysorbates that have not been reviewed, into one report. The Panel agreed that grouping these ingredients together was appropriate because of the common core structure of sorbitan or sorbitol, etherified with PEG chains, and esterified with fatty acids.

The Panel considered the data available to characterize the potential for polysorbates to cause systemic toxicity, irritation, sensitization, reproductive and developmental toxicity, and genotoxicity. They noted the lack of systemic toxicity

at low and moderate doses in several acute and repeated-dose oral exposure studies, and low toxicity at high doses; little or no irritation or sensitization in multiple tests of dermal and ocular exposure; the absence of genotoxicity in multiple Ames tests and chromosome aberration tests, and minimal irritation and lack of sensitization in tests of dermal exposure at concentration of use.

The Panel recognizes that there are data gaps regarding use and concentration of these ingredients. However, the overall information available on the types of products in which these ingredients are used, concentrations of use and the similar pattern of use raise no safety concerns.

The Panel note that polysorbate 20, polysorbate 65, and polysorbate 80 were shown to enhance dermal drug absorption. The Panel cautions that care should be taken in formulating cosmetic products that may contain these ingredients in combination with any ingredients whose safety was based on their lack of dermal absorption, or when dermal absorption was a concern. Especially, care should be taken when creating formulations intended for use on infants.

To address the possible presence of 1,4-dioxane and ethylene oxide impurities in these ingredients, the Panel stressed that the cosmetics industry should continue to use the necessary procedures to limit these impurities from the PEG ingredients before blending them into cosmetic formulations.

The Panel expressed concern about pesticide residues and heavy metals that may be present in botanical (ie, coconut-derived) ingredients. They stressed that the cosmetics industry should continue to use current good manufacturing practices (cGMPs) to limit impurities.

Data from the 1984 safety assessment suggested that polysorbates caused a slight enhancement of tumor development caused by 7,12-dimethyl-benz[a]anthracene (DMBA) and *N*-methyl-*N*′-nitro-*N*-nitrosoguanidine (MNNG); however, the data were not consistent. For other compounds, the tumorigenic properties of 3-methyl-cholanthrene (MCA) and 3,4-benz[a]pyrene (BP) were not enhanced by polysorbates. Since the tumor enhancement effects were inconsistent and depended on the simultaneous exposure to strong chemical carcinogens, which are not present in cosmetics, the Panel felt that the weak tumor enhancement effects were not relevant to cosmetic formulations.

Because some studies showed minimal irritation at concentrations that are used in cosmetics, the Panel cautioned that products containing these ingredients should be formulated to be non-irritating.

It was noted that at the time of the 2001 safety assessment on sorbeth beeswaxes, the Panel had recommended that cosmetic formulations containing PEGs not be used on damaged skin because of the possibility of renal toxicity when PEGs were applied to severely damaged skin, such as in burn patients. Since then, PEGs have been re-reviewed and the additional data demonstrated minimal dermal penetration of low-molecular weight PEGs. The amount of PEGs that would penetrate the stratum corneum barrier, even if damaged, from the use of cosmetics was well below the level of renal toxicity. Therefore, the Panel has removed the caveat that PEGs should not be used on damaged skin. The Panel strongly asserted that it is inappropriate to apply cosmetic products containing high concentrations of PEGs to individuals exhibiting barrier skin disruption through both the stratum corneum and the epidermis.

The Panel discussed the issue of incidental inhalation exposure from spray products, including aerosol and pump hair sprays, spray deodorants, spray body and hand products, and spray moisturizing products. The limited acute exposure data available from 1 new inhalation study and 1 historical tracheal study suggest little potential for respiratory effects at relevant doses. These ingredients are reportedly used at concentrations up to 4% in cosmetic products that may be aerosolized. The Panel noted that 95%-99% of droplets/particles would not be respirable to any appreciable amount. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects. The Panel also considered the other data available to characterize the safety of polysorbates. A detailed discussion and summary of the Panel's approach to evaluating incidental inhalation exposures to ingredients in cosmetic products is available at http://www.cir-safety.org/cir-findings.

CONCLUSION

The CIR Expert Panel concluded that the polysorbates listed below are safe in cosmetics when formulated to be non-irritating. This conclusion supersedes the conclusion reached in the 1984, 2000, and 2001 CIR safety assessments.

Polysorbate 20	PEG-40 sorbitan diisostearate	PEG-3 sorbitan oleate
Polysorbate 21	PEG-2 sorbitan isostearate*	PEG-6 sorbitan oleate
Polysorbate 40	PEG-5 sorbitan isostearate*	PEG-20 sorbitan oleate*
Polysorbate 60	PEG-20 sorbitan isostearate	PEG-40 sorbitan oleate*
Polysorbate 61	PEG-40 sorbitan lanolate	PEG-80 sorbitan palmitate*
Polysorbate 65	PEG-75 sorbitan lanolate*	PEG-40 sorbitan perisostearate*
Polysorbate 80	PEG-10 sorbitan laurate	PEG-40 sorbitan peroleate
Polysorbate 81	PEG-40 sorbitan laurate	PEG-3 sorbitan stearate
Polysorbate 85	PEG-44 sorbitan laurate	PEG-4 sorbitan stearate
PEG-30 sorbitan beeswax	PEG-75 sorbitan laurate	PEG-6 sorbitan stearate
PEG-20 sorbitan cocoate	PEG-80 sorbitan laurate	PEG-40 sorbitan stearate

PEG-60 sorbitan stearate* Sorbeth-2 hexacaprylate/caprate* Sorbeth-50 pentaisostearate* Sorbeth-12 hexacocoate* Sorbeth-40 pentaoleate* PEG-30 sorbitan tetraoleate PEG-40 sorbitan tetraoleate Sorbeth-2 hexaisostearate* Sorbeth-20 tetraisostearate* Sorbeth-2 hexalaurate* PEG-60 sorbitan tetraoleate Sorbeth-30 tetraisostearate Sorbeth-2 hexaoleate* Sorbeth-40 tetraisostearate* PEG-60 sorbitan tetrastearate* PEG-4 sorbitan triisostearate* Sorbeth-40 hexaoleate* Sorbeth-50 tetraisostearate* Sorbeth-50 hexaoleate* PEG-20 sorbitan triisostearate* Sorbeth-4 tetraoleate PEG-160 sorbitan triisostearate Sorbeth-6 hexastearate* Sorbeth-6 tetraoleate PEG-2 sorbitan trioleate* Sorbeth-150 hexastearate* Sorbeth-30 tetraoleate PEG-18 sorbitan trioleate Sorbeth-3 isostearate* Sorbeth-40 tetraoleate PEG-3 sorbitan tristearate* Sorbeth-6 laurate* Sorbeth-60 tetraoleate Sorbeth-2 beeswax* Sorbeth-2/oleate/dimer dilinoleate Sorbeth-30 tetraoleate laurate* Sorbeth-60 tetrastearate* Sorbeth-6 beeswax crosspolymer* Sorbeth-8 beeswax* Sorbeth-20 pentaisostearate* Sorbeth-3 tristearate* Sorbeth-20 beeswax Sorbeth-30 pentaisostearate* Sorbeth-160 tristearate* Sorbeth-2 cocoate* Sorbeth-40 pentaisostearate* Sorbeth-450 tristearate*

^{*}Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

TABLES AND FIGURES

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

Ingredient and CAS No.	Definition	Function
Polysorbate Monoester Sorbitan derivatives	rs	
Polysorbate 21 9005-64-5 (generic)	A mixture of laurate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the monoester, condensed with approximately 4 moles of ethylene oxide. It conforms generally to the formula:	Fragrance ingredient; surfactant- emulsifying agent
	where $w + x + y + z$ has an average value of 4.	
PEG-10 sorbitan laurate 9005-64-5 (generic)	PEG-10 Sorbitan Laurate is an ethoxylated sorbitan ester of lauric acid with an average of 10 moles of ethylene oxide.	Fragrance ingredient; surfactant- cleansing agent surfactant- solubilizing agent
Polysorbate 20 9005-64-5 (generic)	where $w + x + y + z$ has an average value of 10. A mixture of laurate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the monoester, condensed with approximately 20 moles of ethylene oxide. It conforms generally to the formula: $(CH_2CH_2O)_{yH} + (CH_2CH_2O)_{yH} + (CH$	Fragrance ingredient; surfactant- emulsifying agent; surfactant- solubilizing agent
	where $w + x + y + z$ has an average value of 20.	
PEG-40 sorbitan laurate 9005-64-5 (generic)	An ethoxylated sorbitan ester of lauric acid with an average of 40 moles of ethylene oxide. H ₃ C (CH ₂ CH ₂ O) ₂ H (CH ₂ CH ₂ O) ₂ H (CH ₂ CH ₂ O) ₂ H	Fragrance ingredient; surfactant- cleansing agent surfactant- solubilizing agent
PEG-44 sorbitan laurate 9005-64-5 (generic)	where $w + x + y + z$ has an average value of 40. An ethoxylated sorbitan ester of lauric acid with an average of 44 moles of ethylene oxide. $(CH_2CH_2O)_hH_{(CH_2CH_2O)_pH}$ $(CH_2CH_2O)_hH_{(CH_2CH_2O)_pH}$	Fragrance ingredient; surfactant- cleansing agen surfactant- solubilizing agent

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

Ingredient and CAS No.	Definition	Function
PEG-75 sorbitan laurate	An ethoxylated sorbitan ester of lauric acid with an average of 75 moles of ethylene oxide.	Fragrance ingredient;
9005-64-5 (generic)	H ₃ C (CH ₂ CH ₂ O) _x H	surfactant- cleansing agent; surfactant- solubilizing agent
PEG-80 sorbitan laurate 68154-33-6 (generic) 9005-64-5 (generic)	where $w + x + y + z$ has an average value of 75. An ethoxylated sorbitan ester of lauric acid with an average of 80 moles of ethylene oxide.	Fragrance ingredient; surfactant- cleansing agent; surfactant-
	$H_{3}C$ CH_{2} $H_{3}C$ $CH_{2}CH_{2}O_{1}$ $CH_{2}CH_{2}O_{2}H$ $CH_{2}CH_{2}O_{2}H$ $CH_{2}CH_{2}O_{2}H$ $CH_{2}CH_{2}O_{2}H$ $CH_{2}CH_{2}O_{2}H$ $CH_{2}CH_{2}O_{2}H$ $CH_{2}CH_{2}O_{2}H$ $CH_{2}CH_{2}O_{2}H$	solubilizing agent
Polysorbate 40 9005-66-7	A mixture of palmitate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the monoester, condensed with approximately 20 moles of ethylene oxide. It conforms generally to the formula:	Surfactant- emulsifying agent; surfactant- solubilizing agent
PEG-80 sorbitan	$(CH_2)_{l,4} (OCH_2CH_2)_{w}$ $(CH_2CH_2O)_{z}H$ $where w + x + y + z \text{ has an average value of } 20.$ An ethoxylated sorbitan monoester of palmitic acid with an average of 80 moles of ethylene oxide.	Surfactant-
palmitate 9005-66-7 (generic)	H ₃ C $(CH_2CH_2O)_xH$ $(CH_2CH_2O)_yH$ $(CH_2CH_2O)_yH$ $(CH_2CH_2O)_zH$ where $w + x + y + z$ has an average value of 80.	cleansing agent; surfactant solubilizing agent
PEG-2 sorbitan isostearate 66794-58-9 (generic)	An ethoxylated sorbitan monoester of isostearic acid with an average of 2 moles of ethylene oxide.	Surfactant- emulsifying agent
	H ₃ C $(CH_2CH_2CH_2)_w$ $(CH_2CH_2O)_zH$ $(CH_2CH_2O)_z$	
PEG-5 sorbitan isostearate 66794-58-9 (generic)	An ethoxylated sorbitan monoester of isostearic acid with an average of 5 moles of ethylene oxide.	Surfactant- emulsifying agent
	H_3C CH_2 $(OCH_2CH_2)_w$ $(CH_2CH_2O)_yH$ $(CH_2CH_2O)_yH$ $(CH_2CH_2O)_yH$ $(CH_2CH_2O)_yH$	

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

Ingredient and CAS No.	Definition	Function
PEG-20 sorbitan isostearate	An ethoxylated sorbitan monoester of isostearic acid with an average of 20 moles of ethylene oxide.	Surfactant- cleansing agent
66794-58-9 (generic)	(8) 8) 9)	surfactant-
,	CH ₃ O O (CH ₂ CH ₂ O) _y H	emulsifying
		agent;
	H ₃ C (CH ₂) (OCH ₂ CH ₂) (OCH ₂ CH ₂)	surfactant solubilizing
	(CH ₂ CH ₂ O) ₂ H	agent
	(one example of an "iso")	
PEG-3 sorbitan	where $w + x + y + z$ has an average value of 20.	E
stearate	An ethoxylated sorbitan monoester of stearic acid with an average of 3 moles of ethylene oxide.	Fragrance ingredient;
9005-67-8 (generic)	_	surfactant-
	,(CH ₂ CH ₂ O),H	emulsifying
	CH ₃ O O O O O (CH ₂ CH ₂ O) _y H	agent
	H_3C CH_2 $OCH_2CH_2)_W$	
	(сн₂сн₂о),н	
DEC 4 13	where $w + x + y + z$ has an average value of 3.	Г
PEG-4 sorbitan stearate	An ethoxylated sorbitan monoester of stearic acid with an average of 4 moles of ethylene oxide.	Fragrance ingredient;
9005-67-8 (generic)	_	surfactant-
(5)	(CH-CH-O) H	emulsifying
	CH ₃ O O O O O O O O O O O O O O O O O O O	agent
	H_3C CH_2 $OCH_2CH_2)_w$ OCH_2CH_2	
	(СН ₂ СН ₂ О),Н	
0.1 - 1.4 - 61	where $w + x + y + z$ has an average value of 4.	Г
Polysorbate 61 9005-67-8 (generic)	A mixture of stearate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the monoester, condensed with approximately 4 moles of ethylene oxide. It conforms generally to the formula:	Fragrance ingredient;
7003 07 0 (generie)	condensed with approximatery 4 moles of earlytene oxide. It comornis generally to the formula.	surfactant-
	(CH ₂ CH ₂ O) ₃ H	emulsifying
		agent
	H ₀ C CH CH CO	
	(OCI-1201-12/W	
	O/ (CH₂CH₂O)₂H	
	_	
	where $w + x + y + z$ has an average value of 4.	
PEG-6 sorbitan	An ethoxylated sorbitan monoester of stearic acid with an average of 6 moles of ethylene oxide.	Fragrance
stearate 9005-67-8 (generic)		ingredient; surfactant-
your of o (generie)	(2) (2) (2) (3)	emulsifying
	O (CH ₂ CH ₂ O),H O (CH ₂ CH ₂ O),H	agent
	H ₂ C ₂ , , , , , , , , , , , , , , , , , , ,	
	(CH ₂) ₁₆ (OCH ₂ CH ₂) _w	
	(СН ₂ СН ₂ О) ₂ Н	
D. 1	wherein $w + x + y + z$ has an average value of 6.	7
Polysorbate 60 9005-67-8 (generic)	A mixture of stearate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the monoester, condensed with approximately 20 moles of ethylene oxide. It conforms generally to the formula:	Fragrance ingredient;
2002-07-0 (generic)	condensed with approximately 20 moles of empletic oxide. It comorns generally to the formula:	surfactant-
	∠(CH₂CH₂O),H	emulsifying
	O (CH ₂ CH ₂ O),H	agent;
	H ₃ C Y ₀₁ Y	surfactant- solubilizing
	(CH ₂) ₁₆ (OCH ₂ CH ₂) _w	agent
		<u> </u>
	Ö (CH ₂ CH ₂ O) ₂ H	
	Ō (CH₂CH₂O)₂H	
	Ō (CH₂CH₂O)₂H	

Ingredient and CAS No.	Definition	Function
Polysorbate 65 9005-71-4	A mixture of stearate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the triester, condensed with approximately 20 moles of ethylene oxide. It conforms generally to the formula:	Surfactant- emulsifying agent
	H ₂ C (CH ₂ CH ₂ O) ₂ H (CH ₂ CH ₂ O) ₂ H (CH ₂ CH ₂ O) ₂ H	
	where $w + x + y + z$ has an average value of 20.	
PEG-40 sorbitan stearate 9005-67-8 (generic)	An ethoxylated sorbitan ester of stearic acid with an average of 40 moles of ethylene oxide.	Fragrance ingredient; surfactant-cleansing agent;
	$H_{3}C$ CH_{2} I_{16} $OCH_{2}CH_{2}O_{1}H$ $OCH_{2}CH_{2}O_{2}H$ $OCH_{2}CH_{2}O_$	surfactant- solubilizing agent
PEG-60 sorbitan stearate 9005-67-8 (generic)	An ethoxylated sorbitan ester of stearic acid with an average of 60 moles of ethylene oxide.	Fragrance ingredient; surfactant-
,	H ₃ C (CH ₂ CH ₂ O) _b H	cleansing agent; surfactant- solubilizing agent
PEG-3 sorbitan oleate 9005-65-6 (generic)	where $w + x + y + z$ has an average value of 60. An ethoxylated sorbitan ester of oleic acid with an average of 3 moles of ethylene oxide.	Fragrance ingredient; surfactant-
	H ₃ C (CH ₂ CH ₂ O) ₂ H (CH ₂ CH ₂ O) ₂ H (CH ₂ CH ₂ O) ₂ H	emulsifying agent
Polysorbate 81	where $w + x + y + z$ has an average value of 3. A mixture of oleate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the monoester,	Fragrance
9005-65-6 (generic)	condensed with approximately 5 moles of ethylene oxide. It conforms generally to the formula:	ingredient; surfactant- emulsifying agent
	where $y_1 + y_2 + y_3 + z_4$ has an average value of 5	
PEG-6 sorbitan oleate 9005-65-6 (generic)	where $w + x + y + z$ has an average value of 5. An ethoxylated sorbitan ester of oleic acid with an average of 6 moles of ethylene oxide.	Fragrance ingredient; surfactant- emulsifying agent
	$(CH_2)_{7} (CH_2)_{w} (OCH_2CH_2)_{w}$ $(CH_2CH_2CH_2)_{w} (CH_2CH_2O)$ (CH_2CH_2O) (CH_2CH_2O) (CH_2CH_2O)	

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

Ingredient and CAS No.	Definition	Function
PEG-20 sorbitan oleate	An ethoxylated sorbitan ester of oleic acid with an average of 20 moles of ethylene oxide. $(CH_2CH_2O)_{h}H$ $(CH_2CH_2O)_{h$	Surfactant- cleansing agent; surfactant- emulsifying agent; surfactant solubilizing agent
Polysorbate 80 9005-65-6 (generic)	A mixture of oleate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the monoester, condensed with approximately 20 moles of ethylene oxide. It conforms generally to the formula:	Denaturant; fragrance ingredient; surfactant- emulsifying agent; surfactant solubilizing agent
	where $w + x + y + z$ has an average value of 20.	
PEG-30 sorbitan beeswax	[Not listed as a cosmetic ingredient in the <i>Dictionary</i> . An ethoxylated sorbitan ester of beeswax acid with an average of 30 moles of ethylene oxide.]	[1 use in VCRP ⁵⁶]
	where $CH_3(CH_2)_vC(O)$ - represents the fatty acids derived from beeswax and w + x + y + z has an average value of 30. The composition of beeswax is a variable mixture of glycerides and fatty acids containing 24 to 36 carbons in alkyl chain length (beeswax acid). ¹⁸	
PEG-40 sorbitan oleate	An ethoxylated sorbitan ester of oleic acid with an average of 40 moles of ethylene oxide. (CH ₂ CH ₂ O) ₂ H (OCH ₂ CH ₂ O) ₂ H (OCH ₂ CH ₂ O) ₂ H	Surfactant- cleansing agent; surfactant- emulsifying agent; surfactant solubilizing agent
PEG-20 sorbitan cocoate	where $w + x + y + z$ has an average value of 40. An ethoxylated sorbitan ester of coconut acid with an average of 20 moles of ethylene oxide. Where $CH_3(CH_2)_vC(O)$ - represents the fatty acids derived from cocon nucifera (coconut) oil and $w + x + y + z$ has an average value of 20. The fatty acid distribution of coconut oil is 0-1% caproic, 5-9% caprylic, 6-10% capric, 44-52% lauric, 13-19% myristic, 0-1% palmitoleic, 1-3% stearic, 5-8% oleic, and trace-2.5% linoleic acid. S7	Surfactant- cleansing agent; surfactant- solubilizing agent

Ingredient and CAS	Definition	Function
PEG-40 sorbitan lanolate 8036-77-9	An ethoxylated sorbitan derivative of lanolin acid with an average of 40 moles of ethylene oxide.	Surfactant- cleansing agent; surfactant solubilizing
	where $CH_3(CH_2)_vC(O)$ - represents the fatty acids derived from lanolin acid and w $+ x + y + z$ has an average value of 40. The length of the lanolin fatty acid chain varies from 7 to 41 carbon atoms. The main fatty acids are palmitic (C16), stearic (C18) and longer molecules (C20 to C 32). 12	agent
PEG-75 sorbitan lanolate 8051-13-6	An ethoxylated sorbitan derivative of lanolin acid with an average of 75 moles of ethylene oxide.	Surfactant- cleansing agent; surfactant solubilizing agent
	where $CH_3(CH_2)_vC(O)$ - represents the fatty acids derived from lanolin acid and w + x + y + z has an average value of 75. The length of the lanolin fatty acid chain varies from 7 to 41 carbon atoms. The main fatty acids are palmitic (C16), stearic (C18) and longer molecules (C20 to C 32). 12	agent
Polysorbate Monoester Sorbitol derivatives	rs	
Sorbeth-6 laurate [66686-72-4]	The ester of lauric acid and a polyethylene glycol ether of sorbitol containing an average of 6 moles of ethylene oxide.	Surfactant- emulsifying agent; surfactant-
	$\begin{array}{c} H_{5}C \\ CH_{2} \\ H_{5}C \\ CH_{2}CH_{2}O)_{y}H \\ \end{array}$ where $u+v+w+x+y+z$ has an average value of 6.	solubilizing agent
Sorbeth-3 isostearate	The ester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 3 moles of ethylene oxide. CH ₃ O (CH ₂ CH ₂ O) _M H (CH ₂ CH ₂ O) _M H	Surfactant- emulsifying agent
	$H_3C \qquad CH_2 \\ $	
Sorbeth-2 cocoate	where $u + v + w + x + y + z$ has an average value of 3. The ester of the fatty acids derived from cocos nucifera (coconut) oil and a polyethylene glycol ether of Sorbitol containing an average of 2 moles of ethylene oxide.	Surfactant- emulsifying agent
	where $CH_3(CH_2)_tC(O)$ - represents the fatty acids derived from cocos nucifera (coconut) oil and $u + v + w + x + y + z$ has an average value of 2. The fatty acid distribution of coconut oil is 0-1% caproic, 5-9% caprylic, 6-10% capric, 44-52% lauric, 13-19% myristic, 0-1% palmitoleic, 1-3% stearic, 5-8% oleic, and trace-2.5% linoleic acid. 57	

Ingredient and CAS No.	Definition	Function
Sorbeth-2 beeswax	An ethoxylated sorbitan derivative of beeswax with an average of 2 moles of ethylene oxide.	Surfactant- emulsifying
	O (CH ₂ CH ₂ O) _W H (CH ₂ CH ₂ O) _y H	agent
	H ₃ C (CH ₂ CH ₂)	
	(CH ₂ CH ₂ O) ₂ H	
	Ō (CH ₂ CH ₂ O) ₂ H	
	(CH_2CH_2O) , H where $CH_3(CH_2)$, $C(O)$ - represents the fatty acids derived from beeswax and $u + v + v$	
	w + x + y + z has an average value of 2. The composition of beeswax is a variable	
	mixture of glycerides and fatty acids containing 24 to 36 carbons in alkyl chain length (beeswax acid). 18	
Sorbeth-6 beeswax	An ethoxylated sorbitan derivative of beeswax with an average of 6 moles of ethylene oxide.	Surfactant-
3051-15-8		emulsifying agent
	O (CH ₂ CH ₂ O) _w H (CH ₂ CH ₂ O) _y H	7
	H ₃ C (CH ₂) (OCH ₂ CH ₂) _{lu}	
	(CH ₂ CH ₂ O) ₂ H	
	O (CH ₂ CH ₂ O) _x H	
	$_{(CH_2CH_2O),H}$ where $CH_3(CH_2)_tC(O)$ - represents the fatty acids derived from beeswax and $u+v+$	
	w + x + y + z has an average value of 6. The composition of beeswax is a variable mixture of glycerides and fatty acids containing 24 to 36 carbons in alkyl chain	
	length (beeswax acid). 18	
orbeth-8 beeswax	An ethoxylated sorbitan derivative of beeswax with an average of 8 moles of ethylene oxide.	Surfactant- emulsifying
	O (CH ₂ CH ₂ O) _N H _{(CH₂CH₂O)_NH}	agent
	H ₂ C ₂	7
	(CH ₂ CH ₂ O) ₂ H	
	(CH ₂ CH ₂ O),H	
	where $CH_3(CH_2)_tC(O)$ - represents the fatty acids derived from beeswax and $u + v + w + x + y + z$ has an average value of 8. The composition of beeswax is a variable	
	mixture of glycerides and fatty acids containing 24 to 36 carbons in alkyl chain	
Sorbeth-20 beeswax	length (beeswax acid). 18 An ethoxylated sorbitan derivative of beeswax with an average of 20 moles of ethylene oxide.	Surfactant-
orden 20 deeswax	The choxylated sololatil delivative of occornax with an average of 20 moles of entry lene oxide.	emulsifying
	O (CH ₂ CH ₂ O) _W H (CH ₂ CH ₂ O) _V H	agent;
	H ₃ C (CH ₂) (OCH ₂ CH ₂) ₀ O	solubilizing
	(CH ₂ CH ₂ O) ₂ H	agent
	© (CH ₂ CH ₂ O),H	
	where $CH_3(CH_2)_1C(O)$ - represents the fatty acids derived from beeswax and $u + v + v + v + v + v + v + v + v + v + $	
	w + x + y + z has an average value of 20. The composition of beeswax is a variable	
	mixture of glycerides and fatty acids containing 24 to 36 carbons in alkyl chain length (beeswax acid). 18	
	The state of the s	
Polysorbate Diester Sorbitan Derivative		
PEG-40 sorbitan	An ethoxylated sorbitan diester of isostearic acid with an average of 40 moles of ethylene oxide.	Surfactant-
diisostearate	(CH ₂ CH ₂ O),H	emulsifying agent;
		surfactant
	H ₃ C (CH ₂) ₁₄ (OCH ₂ CH ₂) _W O (CH ₂ CH ₂ O) ₂ (CH ₂ CH ₃	solubilizing agent
	(one example of an "iso"; one example of a diester)	
	where $w + x + y + z$ has an average value of 40.	

Ingredient and CAS No.	Definition	Function
Polysorbate Triesters Sorbitan Derivatives		
PEG-4 sorbitan triisostearate	The triester of isostearic acid and a polyethylene glycol ether of sorbitol with an average of 4 moles of ethylene oxide.	Surfactant- emulsifying agent
	(one example of an "iso"; one example of a triester)	
PEG-20 sorbitan triisostearate	where $w + x + y + z$ has an average value of 4. The triester of isostearic acid and a polyethylene glycol ether of sorbitol with an average of 20 moles of ethylene oxide.	Surfactant- emulsifying
	(one example of an "iso"; one example of a triester)	agent
PEG-160 sorbitan	where $w + x + y + z$ has an average value of 20. The triester of isostearic acid and a polyethylene glycol ether of sorbitol with an average of 160 moles of	Surfactant-
triisostearate	ethylene oxide.	cleansing agent; surfactant- solubilizing agent
	$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\$	
	(one example of an "iso"; one example of a triester) where $w + x + y + z$ has an average value of 160.	
PEG-3 sorbitan tristearate	The triester of stearic acid and a polyethylene glycol ether of sorbitol with an average of 3 moles of ethylene oxide.	Skin- conditioning agent-emollient
	(one example of a triester) where $w + x + y + z$ has an average value of 3.	
PEG-2 sorbitan trioleate	A triester of oleic acid and a polyethylene glycol ether of sorbitol with an average of 2 moles of ethylene oxide.	Surfactant- emulsifying agent
	$\begin{array}{c} \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{O}), \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\$	
	(one example of a triester) where $w + x + y + z$ has an average value of 2.	

Ingredient and CAS	[Bracketed entries are the work product of CIR starr]	
No.	Definition	Function
PEG-18 sorbitan trioleate	[Not listed as a cosmetic ingredient in the <i>Dictionary</i> . A triester of oleic acid and a polyethylene glycol ether of sorbitol with an average of 18 moles of ethylene oxide.]	[1 use in VCRP ⁵⁶]
	(one example of a triester) where $w + x + y + z$ has an average value of 18.	
Polysorbate 85 9005-70-3	A mixture of oleate esters of sorbitol and sorbitol anhydrides, consisting predominantly of the triester, condensed with approximately 20 moles of ethylene oxide. It conforms generally to the formula: (CH ₂ CH ₂ O) ₂ H ₁ (CH ₂ CH ₂ O) ₃ H ₂ (CH ₂ CH ₂ O) ₄ CH ₂ H ₃ (CH ₂ CH ₂ O) ₄ CH ₂ H ₃ (CH ₂ CH ₂ O) ₅ H ₄ (CH ₂ CH ₂ O) ₅ CH ₃	Surfactant- dispersing agent; surfactant- emulsifying agent
	where $w + x + y + z$ has an average value of 20.	
Polysorbate Triesters Sorbitol Derivatives	· · · · · · · · · · · · · · · · · · ·	
Sorbeth-3 tristearate	The triester of stearic acid and a polyethylene glycol ether of sorbitol containing an average of 3 moles of ethylene oxide.	Surfactant- emulsifying agent
	$(CH_2CH_2O)_{th}H_{CH_2CH_2O)_{th}}H_{CH_2CH_2O)_$	
Sorbeth-160 tristearate	The triester of stearic acid and a polyethylene glycol ether of sorbitol with an average of 160 moles of ethylene oxide.	Surfactant- cleansing agent surfactant-
	H ₃ C (CH ₂ CH ₂ O) _w H (CH ₂ CH ₂ O) _y (CH ₂ CH ₂ O) _y (CH ₂ CH ₃ (CH ₂ CH ₂ O) _y (CH ₂ CH ₂ O) _y (CH ₂ CH ₃ (CH ₂ CH ₂ O) _y (CH ₂ CH ₂ O) _y (CH ₂ CH ₂ O) _y (CH ₂ CH ₃ (CH ₂ CH ₂ O) _y (CH ₂ CH ₂ O)	solubilizing agent

(one example of a triester) where u + v + w + x + y + z has an average value of 160.

	[Bracketed entries are the work product of CIR staff]	
Ingredient and CAS No.	Definition	Function
Sorbeth-450 tristearate	The triester of stearic acid and a polyethylene glycol ether of sorbitol with an average of 450 moles of ethylene oxide. $(CH_2CH_2O)_{MH} (CH_2CH_2O)_{NH} ($	Surfactant-dispersing agent; surfactant - emulsifying agent; surfactant - foam booster; viscosity increasing agent - aqueous
Polysorbate Tetraest Sorbitan Derivatives		
PEG-60 sorbitan tetrastearate	The tetraester of stearic acid and a polyethylene glycol ether of sorbitol, with an average of 60 moles of ethylene oxide.	Surfactant- emulsifying agent
	$(CH_2CH_2O)_x \qquad (CH_2)_{16} \qquad (CH_2)_{16} \qquad (CH_2CH_2O)_y \qquad (CH_2)_{16} \qquad (CH_2CH_2O)_z \qquad (C$	
PEG-30 sorbitan tetraoleate	The tetraester of oleic acid and a polyethylene glycol ether of sorbitol, with an average of 30 moles of ethylene oxide.	Surfactant- emulsifying agent
	$\begin{array}{c} H_3C \\ CH_2 \\ T \\ $	
PEG-40 sorbitan tetraoleate	The tetraester of oleic acid and a polyethylene glycol ether of sorbitol, with an average of 40 moles of ethylene oxide.	Surfactant- emulsifying agent
	$H_{3}C \leftarrow (CH_{2})_{7} \leftarrow (CH_{2})_{1} \leftarrow (CH_{2})_{1} \leftarrow (CH_{2})_{1} \leftarrow (CH_{2})_{2} \leftarrow (CH_{2})_{$	

where w + x + y + z has an average value of 40.

Ingredient and CAS No.	Definition	Function
PEG-60 sorbitan tetraoleate	The tetraester of oleic acid and a polyethylene glycol ether of sorbitol, with an average of 60 moles of ethylene oxide. H ₃ C CH ₂	Surfactant- emulsifying agent
Polysorbate Esters - m	[where $w + x + y + z$ has an average value of 60.]	
PEG-40 sorbitan perisostearate	A mixture of isostearic acid esters of sorbitol condensed with an average of 40 moles of ethylene oxide. $(CH_2CH_2O)_{1}R_{1}$ $(CH_2CH_2O)_{2}R_{2}$ $(CH_2C$	Surfactant- emulsifying agent
PEG-40 sorbitan peroleate	A mixture of oleic acid esters of sorbitol condensed with an average of 40 moles of ethylene oxide. $(CH_2CH_2O)_{x}R$ $(CH_2$	Surfactant- emulsifying agent; surfactant solubilizing agent
Polysorbate Tetraester Sorbitol Derivatives		
Sorbeth-20 tetraisostearate	The tetraester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 20 moles of ethylene oxide. $(CH_2CH_2O)_wH_{CH_2CH_2O)_yH} + CH_3 + CH_$	Surfactant- emulsifying agent
Sorbeth-30 tetraisostearate	The tetraester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 30 moles of ethylene oxide. $(CH_2CH_2O)_w H_{(CH_2CH_2O)_y} H_{(CH_2CH_2O)_y} H_{(CH_2CH_2O)_y} H_{(CH_2CH_2O)_x} H_{(CH_2$	Surfactant- emulsifying agent

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

ngredient and CAS		
No.	Definition	Function
Sorbeth-40 tetraisostearate	The tetraester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 40 moles of ethylene oxide. CH ₃ (CH ₂ CH ₂ O) ₀ H (CH ₂ CH ₂ O) _y H (CH ₂ C	Surfactant- emulsifying agent
	(one example of an "iso"; on example of a tetraester)	
Sorbeth-50 tetraisostearate	where $u + v + w + x + y + z$ has an average value of 40. The tetraester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 50 moles of ethylene oxide. $(CH_2CH_2O)_{ij}H_{ij}CH_2CH_2O_{$	Surfactant- emulsifying agent
Sorbeth-60	where $u + v + w + x + y + z$ has an average value of 50. The tetraester of stearic acid and a polyethylene glycol ether of sorbitol containing an average of 60 moles	Surfactant-
tetrastearate	of ethylene oxide. $(CH_2CH_2O)_{u}H_{CH_2CH_2O)_{y}H}$ $(CH_2CH_2O)_{u}H_{CH_2CH_2O)_{x}H}$ $(CH_2CH_2O)_{u}H_{CH_2CH_2O)_{u}H}$ $(CH_2CH_2O)_{u}H_{CH_2CH_2O)_{u}H}$ $(CH_2CH_2O)_{u}H_{CH_2CH_2O)_{u}H}$ $(CH_2CH_2O)_{u}H_{CH_2CH_2O}$	emulsifying agent
Sorbeth-4 tetraoleate	The tetraester of oleic acid and a polyethylene glycol ether of sorbitol containing an average of 4 moles of ethylene oxide.	Surfactant- emulsifying agent
	(one example of a tetraester) where $w + x + y + z$ has an average value of 4.	

Ingredient and CAS No.	S Definition			
Sorbeth-6 tetraoleate	The tetraester of oleic acid and a polyethylene glycol ether of sorbitol containing an average of 6 moles of ethylene oxide.	Surfactant- emulsifying agent		
	$(CH_2CH_2O)_{\bullet}H$ (CH_2CH_2O)			
	(one example of a tetraester) where $w + x + y + z$ has an average value of 6.			
Sorbeth-30 tetraoleate	The tetraester of oleic acid and a polyethylene glycol ether of sorbitol containing an average of 30 moles of ethylene oxide.	Surfactant- emulsifying agent		
	$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{CH}_{2} \\ \text{CH}_{2$			
	(one example of a tetraester)			
Sorbeth-40 tetraoleate	where $w + x + y + z$ has an average value of 30. The tetraester of oleic acid and a polyethylene glycol ether of sorbitol with an average of 40 moles of ethylene oxide.	Surfactant- emulsifying agent		
	$(CH_2CH_2C)_{ij}H$ $(CH_$			
	(one example of a tetraester)			
Sorbeth-60 tetraoleate	where $w + x + y + z$ has an average value of 40. The tetraester of oleic acid and a polyethylene glycol ether of sorbitol with an average of 60 moles of ethylene oxide.	Surfactant- emulsifying agent		
	(one example of a tetraester) where $w + x + y + z$ has an average value of 60 .			

Ingredient and CAS No.	Definition	Function
Polysorbate Pentaester Sorbitol Derivatives	rs	
Sorbeth-20 pentaisostearate	The pentaester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 20 moles of ethylene oxide. CH ₃ CH ₃ (CH ₂ CH ₂ O) _y H _{CH₂CH₂O)_y (CH₂CH₂O)_y (CH₂CH₂}	Surfactant- emulsifying agent
Sorbeth-30	where $u + v + w + x + y + z$ has an average value of 20. The pentaester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 30	Surfactant-
pentaisostearate	moles of ethylene oxide. (CH ₂ CH ₂ O) _y H _{CH₂CH₂O)_y (CH₂CH₂O)_y (CH₂CH₂O)}	emulsifying agent
Sorbeth-40 pentaisostearate	The pentaester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 40 moles of ethylene oxide. CH ₃ CH ₃ (CH ₂ CH ₂ O) _y H _{CH₂CH₂O)_y (CH₂CH₂O)_y (CH₂CH₂}	Surfactant- emulsifying agent
Sorbeth-50 pentaisostearate	The pentaester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 50 moles of ethylene oxide. CH ₃ CH ₃ (CH ₂ CH ₂ O) _y H _{CH₂CH₂O)_y (CH₂CH₂O)_y (CH₂CH₂}	Surfactant- emulsifying agent

Ingredient and CAS No.	CAS Definition				
Sorbeth-40 pentaoleate	The pentaester of oleic acid and a polyethylene glycol ether of sorbitol containing an average of 40 moles of ethylene oxide.				
	$(\text{ch}_{2}\text{Ch}_{2}\text{Ch}_{2}\text{O})_{x}\text{H}_{3}\text{C} + (\text{ch}_{2})_{7}\text{Ch}_{3}$ $(\text{ch}_{2}\text{Ch}_{2}\text{O})_{x}\text{H}_{3}\text{Ch}_{2}\text{Ch}_{2}\text{O})_{x}\text{H}_{2}\text{Ch}_{2}\text{O}_{7}\text{Ch}_{3}$ $(\text{ch}_{2}\text{Ch}_{2}\text{O})_{x}\text{H}_{2}\text{Ch}_{2}\text{O}_{7}\text{Ch}_{3}$ $(\text{ch}_{2}\text{Ch}_{2}\text{O})_{x}\text{H}_{2}\text{Ch}_{2}\text{Ch}_{2}\text{Ch}_{3}$ $(\text{ch}_{2}\text{Ch}_{2}\text{O})_{x}\text{H}_{2}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_{2}\text{Ch}_{3}\text{Ch}_$				
Sorbeth-30	The oleic acid tetraester and lauric acid ester of sorbitol ethoxylated with an average of 30 moles of ethylene	Surfactant-			
tetraoleate laurate	oxide.	emulsifying agent			
	$H_3C \leftarrow (CH_2CH_2O)_{a} \stackrel{H}{\overset{H}}{\overset{H}{\overset{H}}{\overset{H}{\overset{H}}{\overset{H}{\overset{H}}{\overset{H}{\overset{H}}{\overset{H}}{\overset{H}{\overset{H}}{\overset{H}}{\overset{H}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}}{\overset{H}}}{\overset{H}}}{\overset{H}}}}{\overset{H}{\overset{H}}}{\overset{H}}}}}}}}}$				

Polysorbate Hexaesters Sorbitol Deriviatives

Sorbeth-2 hexalaurate The hexaester of lauric acid and a polyethylene glycol ether of sorbitol containing an average 2 moles of ethylene oxide.

Skinconditioning agent-emollient

$$(CH_2CH_2O)_w \qquad (CH_2 CH_2O)_w \qquad (CH_2 CH_2O)_v \qquad (CH_2$$

(one example of an "iso"; one example of a pentaester) where u + v + w + x + y + z has an average value of 30.

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

Ingredient and CAS No.				
Sorbeth-2 hexaisostearate	The hexaester of isostearic acid and a polyethylene glycol ether of sorbitol containing an average of 2 moles of ethylene oxide. CH ₃	Function Skin- conditioning agent-emollient		
	(one example of a pentaester)			
Sorbeth-6 hexastearate	where $u + v + w + x + y + z$ has an average value of 2. The hexaester of stearic acid and a polyethylene glycol ether of sorbitol containing an average of 6 moles of ethylene oxide.	Surfactant- emulsifying agent		
	$(CH_2CH_2O)_w \qquad (CH_2 \atop l_6) \qquad (CH_2CH_2O)_y \qquad (CH_2 \atop l_6) \qquad (CH_2CH_2O)_y \qquad (CH_2 \atop l_6) \qquad (CH_2CH_2O)_z \qquad (CH_2 \atop l_6) \qquad (CH_2 \atop l_6)$			
Sorbeth-150 hexastearate	The hexaester of stearic acid and a polyethylene glycol ether of sorbitol containing an average of 150 moles of ethylene oxide.	Viscosity increasing agent-aqueous		
	$H_3C \leftarrow CH_2CH_2O)_w \leftarrow CH_2 \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2 \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2CH_2O)_v \leftarrow CH_2 \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2CH_2O)_v \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2CH_2O)_v \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2CH_2O)_v \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2 \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2 \leftarrow CH_3 \leftarrow CH_3 \leftarrow CH_2 \leftarrow CH$			

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

Ingredient and CAS No.	ent and CAS Definition			Definition Function	
Sorbeth-2 hexaoleate	The hexaester of oleic acid and a polyethylene glycol ether of sorbitol containing an average of 2 moles of ethylene oxide.	Skin- conditioning agent-emollient			
	$(CH_2CH_2O)_w \qquad (CH_2 \choose T_1 \qquad (CH_2 \choose T_2)_T \qquad (CH_2 \choose T_1 \qquad (CH_2 \choose $				
Sorbeth-40 hexaoleate	The hexaester of oleic acid and sorbeth-40.	Surfactant- emulsifying agent			
	$(CH_2CH_2O)_w \qquad (CH_2)_{7} \qquad $				
Sorbeth-50 hexaoleate	where $u + v + w + x + y + z$ has an average value of 40. The hexaester of oleic acid with a polyethylene glycol ether of sorbitol containing an average of 50 moles of ethylene oxide.	Surfactant- emulsifying agent			
	$(CH_2CH_2O)_w \qquad (CH_2)_{7} \qquad $				

Table 1. The Definitions and Functions of the Polysorbates in This Safety Assessment.⁴ [Bracketed entries are the work product of CIR staff]

Ingredient and CAS	redient and CAS Definition			
Sorbeth-2 hexacaprylate/ caprate	The hexaester of a mixture of caprylic and capric acids with a polyethylene glycol ether of sorbitol			
Sorbeth-12 hexacocoate	The hexaester of coconut acid with a polyethylene glycol ether of sorbitol containing an average of 12 moles of ethylene oxide. (CH ₂ CH ₂ O) _w (CH ₂ CH ₂ O)	Skin- conditioning agent-emollient		
Other				
Sorbeth-2/oleate/ dimer dilinoleate crosspolymer	The crosslinked polymer of a 2-mole ethoxylate of sorbitol, oleic acid, and dilinoleic acid. Where R is hydrogen, oleate, or dimer dilinoleate, and $u + v + w + x + y + z$ has an average value of 2.	Skin- conditioning agent – emollient		

Table 2. Previous safety assessment of polysorbates and component moieties of the ingredients in this safety assessment.

Ingredients	Conclusion	Maximum concentration in report	Reference
V		штерогі	Keierence
Previous safety assessment of polys		> 500/	1
Polysorbates – polysorbate 20, 21, 40, 60, 61, 65, 80, 81, 85 Polysorbates – PEG-20 sorbitan cocoate, PEG-40 sorbitan diisostearate, PEG-2 sorbitan isostearate, PEG-5 sorbitan isostearate, PEG-20 sorbitan isostearate, PEG-40 sorbitan lanolate, PEG-75 sorbitan lanolate, PEG-10 sorbitan laurate, PEG-40 sorbitan laurate, PEG-44 sorbitan laurate, PEG-80 sorbitan laurate, PEG-3 sorbitan oleate, PEG-6 sorbitan oleate, PEG-80 sorbitan palmitate, PEG-40 sorbitan perisostearate, PEG-40 sorbitan peroleate, PEG-3 sorbitan stearate, PEG-6 sorbitan stearate, PEG-60 sorbitan stearate, PEG-30 sorbitan tetraoleate, PEG-40 sorbitan tetraoleate, PEG-60 sorbitan tetraoleate, PEG-40 sorbitan triisostearate, PEG-40 sorbitan triisostearate, PEG-40 sorbitol hexaoleate (currently sorbeth-40 hexaoleate), PEG-50 sorbitol hexaoleate(currently sorbeth-30	Safe as used. Safe as used.	>50% 10%	1 2
tetraoleate laurate), PEG-60 sorbitol tetrastearate (currently sorbeth-60 tetrastearate) Sorbeth-6 beeswax, Sorbeth-8 beeswax, Sorbeth-20 beeswax	Safe for use as cosmetic ingredients under the present practices of use. The Expert Panel recommends that cosmetic formulations containing PEG-6, PEG-20, or PEG-75 not be used on damaged skin.*	11%	6
Safety assessments of compone	nts		
Beeswax, candelilla wax, carnauba wax, and Japan wax	Safe as used.	56%	8,14
Coconut oil, acid and related ingredients	Safe as used	100%	8,10,11,58
Isostearic acid	Safe as used.	26%	8,13
Lanolin acid	Safe as used	65%	8,12
Oleic acid, lauric acid, myristic acid, stearic acid	Safe in the present practices of use and concentration.	> 50% in 1987; 43% in 2006	9,16
Polyethylene glycols (PEG) - triethylene glycol and polyethylene (PEGs) -4, -6, -7, -8, -9, -10, -12, -14, -16, -18, -20, -32, -33, -40, -45, -55, -60, -75, -80, -90, -100, -135, -150, -180, -200, -220, -240, -350, -400, -450, -500, -800, -2M, -5M, -7M, -9M, -14M, -20M, -23M, -25M, -45M, -65M, -90M, -115M, -160M, and -180M and any PEG >= 4	Safe in the present practices of use and concentration.*	85%	7,17
Sorbitan esters - sorbitan caprylate, sorbitan cocoate, sorbitan diisostearate, sorbitan dioleate, sorbitan distearate, sorbitan isostearate, sorbitan laurate, sorbitan oleate, sorbitan olivate, sorbitan palmitate, sorbitan sesquiisosotearate, sorbitan stearate, sorbitan sesquioleate, sorbitan triisostearate, sorbitan trioleate, and sorbitan tristearate	Safe as used.	9.1%	19-21
Stearates - butyl stearate, cetyl stearate, isobutyl stearate, isocetyl stearate, isopropyl stearate, myristyl stearate, and octyl stearate	Safe as used.	87%	8,15
Alkyl Esters	Safe as used	78%	18

^{*} In 2010, the Panel concluded that PEGs were safe as used and removed the caveat that PEGs should not be used on damaged skin.⁷

Table 3. Chemical and physical properties of some polysorbates.

Property	Value	Reference
	Polysorbate 21	
Physical Form	Liquid/oily liquid	22
Molecular Weight g/mol	390.5	22
PEG	-10 sorbitan laurate	
Physical Form	Unctuous liquid	59
Color	Clear yellow	59
Odor	Mild	59
Water Solubility	Soluble	59
Other Solubility		
Acetone	Soluble	59
Ethyl acetate	Soluble	59
Mineral oil	Insoluble	59

Table 3. Chemical and physical properties of some polysorbates.

Property	Value	Reference
1 1	lysorbate 20	
Physical Form	Liquid	22,60
y	Oily liquid	61
Color	Lemon-amber	22,60,61
Odor	Characteristic	22,60
Molecular Weight g/mol	~1228	60
Density/Specific Gravity @ 25°C	1.095	22,60
Water Solubility	Soluble	59,60
Other Solubility	5014010	
Ethanol	Soluble	59,60
Ethyl acetate	Soluble	59,60
Mineral oil	Insoluble	61
	llysorbate 40	
Physical Form	Oily liquid or Vaseline-	62-65
Filysical Form	like	
Color	Lemon-orange	66
Odor	Characteristic	2,59,66
Density/Specific Gravity	1.05	65
Water Solubility	Soluble	59,66
Other Solubility	Soluble	<u> </u>
Methanol	S-11-	59,66
Ethanol	Soluble Soluble	59,66
Mineral oil		59,66
	Insoluble	,
	lysorbate 61	59,62,67
Physical Form	Waxy solid	59
Color	Tan	68
Water Solubility	Dispersible	
Other Solubility	T 1.11.	68
Ethylene glycol	Insoluble Insoluble	68
Propylene glycol		
	lysorbate 60	62,69
Physical Form	Oily liquid	69,70
	Semigel	71
~ .	Wax	59
Color	Lemon yellow	69
0.1	Yellow-orange	69
Odor	Characteristic	69
Water Solubility	Soluble	09
Other solubility		69
Ethyl acetate	Soluble	69
Tolulene	Soluble	69
Vegetable and mineral oil	insoluble	09
	lysorbate 65	
Physical Form	Waxy solid	62,63,72
Color	Tan	59,72
Odor	Faint, characteristic	59,72
Water Solubility	Dispersible	59
Other Solubility		
Acetone	Soluble	72
Ethanol	Soluble	59
Methanol	Soluble	59
Vegetable and mineral oil	Soluble	59

Table 3. Chemical and physical properties of some polysorbates.

Property	Value	Reference
Polysorbate 81		23
Physical Form	Liquid	63
	May gel at room	
0.1	temperature	23
Color	Clear	59
Odor	Faint	23
Density/Specific Gravity @ 20°C	1.0356	23
@ 25 °C	1.032	23
@ 20°C	10299	23
@ 25 °C	1.0264	23
Viscosity kg/(s m) @ 20°C	0.672	23
0.2500	0.84	23
@ 25°C	0.328	23
	0.383	23
Vapor pressure mmHg	0.002	
Melting Point °C	-33.9	23
	-32.7	23
Water Solubility g/L	~0.100	23
	~0.035	23
@ 20°C & pH 8.29-9.39	>0.500	23
Other Solubility		
Ether	Dispersible	59
Ethylene glycol	Dispersible	59
Ethanol	Soluble	59
PEG-20 sorbitan o		
		2
Density/Specific Gravity	1.1/1.064	
Other Solubility		59
Dimethyl sulfoxide	Soluble	59
Ethanol	Soluble	
Mineral oil	Soluble	59
Toluene	Soluble	59
Polysorbate 80)	
Physical Form	Viscous, oily liquid	62,64,65,70,71,73-75
Color	Lemon to orange/amber	59,75,76
Odor	Characteristic	59,75
Density/Specific Gravity	1.08	73
Density/Specific Gravity	1.06-1.10	74,76
		65
V::t1//\	1.07-1.09	76
Viscosity kg/(s m)	0.3-0.5	59
Water Solubility	Soluble	
Other Solubility		75
Ethanol	Soluble	75
Methanol	Soluble	75
Toluene	Soluble	75
Mineral oil	Insoluble	75
Petroleum ether	Insoluble	75
PEG-40 sorbitan la		
Physical Form	Soft paste	68
Water Solubility @ 65°C	Soluble	68
	Soluble	
Other Solubility @ 65°C	0.1.11	68
Dioxane	Soluble	68
Carbon tetrachloride	Soluble	
Sorbeth-6 beesw		
Physical Form	Waxy solid	77
Color	Tan	77
COIOI		77
	Fatty	
Odor	Fatty Insoluble	77
Odor Water Solubility		77
Odor Water Solubility Other Solubility	Insoluble	77
Odor Water Solubility Other Solubility Corn oil	Insoluble Soluble	
Odor Water Solubility Other Solubility Corn oil Ethylene glycol	Insoluble Soluble Insoluble	77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil	Insoluble Soluble Insoluble Insoluble	77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil	Insoluble Soluble Insoluble Insoluble Vax	77 77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil	Insoluble Soluble Insoluble Insoluble	77 77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil Sorbeth-20 beesv	Insoluble Soluble Insoluble Insoluble Vax	77 77 77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil Sorbeth-20 beesv Physical Form Color	Insoluble Soluble Insoluble Insoluble Wax Waxy solid Tan	77 77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil Sorbeth-20 beesv Physical Form Color	Insoluble Soluble Insoluble Insoluble Wax Waxy solid	77 77 77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil Sorbeth-20 beesv Physical Form Color Odor Water Solubility	Insoluble Soluble Insoluble Insoluble wax Waxy solid Tan Mild, fatty	77 77 77 77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil Sorbeth-20 beesv Physical Form Color Odor Water Solubility Other Solubility	Insoluble Soluble Insoluble Insoluble wax Waxy solid Tan Mild, fatty Insoluble	77 77 77 77 77 77 77
Odor Water Solubility Other Solubility Corn oil Ethylene glycol Mineral oil	Insoluble Soluble Insoluble Insoluble wax Waxy solid Tan Mild, fatty	77 77 77 77 77 77 77

Table 3. Chemical and physical properties of some polysorbates.

Property	Value	Reference	
P	Polysorbate 85		
Physical Form	Liquid	62,64	
	May gel at room	59,63	
	temperature		
Color	Clear amber	59	
Odor	Characteristic	59	
Water Solubility	Dispersible	59	
Other Solubility			
Vegetable and mineral oils	Soluble	59	
PEG-4	0 sorbitan peroleate		
Physical Form	Viscous, oily liquid	68	
Color	Clear yellow	68	
Odor	Faint characteristic	68	
Water Solubility	Dispersible	68	
Other Solubility			
Mineral oil	Soluble	68	

Table 4. Chemical and physical properties of generic Sorbitan monolaurate, ethoxylated ingredients.

Property	Value	Reference
Sorbitan monolaurate	, ethoxylated	
Physical Form	Liquid	22
Water Solubility g/L @ 20 °C & pH 6.3 and 7.9	<2.0	22
Sorbitan monostearate	e, ethoxylated	
Physical Form	Solid (wax)	24
Color	Colorless	24
Odor	Odorless	24
Density/Specific Gravity @ 23°C	1.007	24
@ 25°C	1.07	24
Vapor pressure mmHg @ 20°C	< 0.0.75	24
0 20°C	< 0.1	24
Melting Point °C	45-50	24
	39.6	24
Boiling Point °C	90.4	24
Water Solubility g/L @ 23°C	0.300	24
Other Solubility g/L		
Petroleum ether @ 23°C	1.800	24
Methanol @ 23°C	0.200	24
log K _{ow} @ 23 °C & pH 6.4	0.03	24
Disassociation constants pKa @ 23°C	0.199 x 10 ⁻⁹	24

Table 5. The approximate ester content of some polysorbates. ^{22,26}

		1.1		1 7		
Ingredient	Laurate (%)	Myristate (%)	Palmitate (%)	Stearate (%)	Oleate (%)	Other esters (%)
Polysorbate 20	39±2	26±1	12±1	12±2	ND	11±2
Polysorbate 21	40-60	14-25	6-15	0-7	0-11	0-24
Polysorbate 40	<1	2	87±2	10±1	ND	<1
Polysorbate 60	2±1	4±1	43±1	51±2	ND	<1
Polysorbate 80	<1	2	22±2	11±2	66±1	<1

ND=none detected

Table 6. Current and historical frequency and concentration of use of polysorbates according to duration and exposure. ^{1,2,5,6,14,31}

	# of Uses		Max Conc o	f Use (%) # of Uses Max Cor		Max Cone o	c of Use (%)	
	2015	1998**	2014	1981***	2015	1998	2014	1981
	2013	1	-	1901	2013			1961
m	2012		sorbate 20	0.00 . 70			sorbate 21	0.4.4
Totals*	3013	770	0.00001-19.6	0.09->50	55	4	0.33-8	0.1-1
Duration of Use						_		
Leave-On	1639	446	0.00001-9.1	0.09->50	17	4	0.33-2	0.1-1
Rinse-Off	1275	297	0.0006-19.6	0.09-25	38	NR	0.5-8	NR
Diluted for (Bath) Use	99	27	0.0097-8.9	0.1-50	NR	NR	NR	NR
Exposure Type								
Eye Area	226	39	0.00015-3.5	0.1-10	4	NR	0.5	NR
Incidental Ingestion	32	12	0.01-5.8	0.09-5	NR	NR	NR	NR
Incidental Inhalation-Spray	35; 546 ^a ; 397 ^c	22; 169 ^a ; 50 ^c	0.00001-3 ^d ; 0.0019-3 ^a ; 0.76-2 ^c	0.09-1; <0.1->50 ^a ; 0.09-5 ^c	6ª	4 ^a	0.33 ^g	0.1-1 ^a
Incidental Inhalation-Powder	52; 5 ^b ; 397 ^c	43; 50°	0.00075-3; 0.0006-9.1 ^b ; 0.76-2 ^c	0.1-1; 0.09-5°	NR	NR	0.38 ^b	NR
Dermal Contact	2299	493	0.00001-19.6	0.09-5	14	4	0.38-2	NR
Deodorant (underarm)	9ª	3ª	0.00018-4 ^e ; 0.00082-3 ^f	0.1-5ª	NR	NR	NR	NR
Hair - Non-Coloring	555	205	0.006-12.6	0.09-25	14	NR	0.33-8	NR
Hair-Coloring	92	50	0.4-3.8	0.09-5	24	NR	2.4	NR
Nail	11	6	0.000041-3.3	0.09-5	NR	NR	NR	NR
Mucous Membrane	822	66	0.0006-19.6	0.09->50	3	NR	NR	NR
Baby Products	32	3	0.00078-12.6	0.1-25	NR	NR	NR	NR
	2015	1998	2014	1981	2014	1998	2014	1981
		Polys	orbate 40			Polys	orbate 60	
Totals*	80	32	0.008-5	0.09-10	1589	332	0.0000001-6	0.09-25
Duration of Use								
Leave-On	65	24	0.008-5	0.09-10	1228	255	0.00009-4	0.00.35
Rinse-Off	15							11 114-73
Diluted for (Bath) Use	1.3	8	1 5-3					0.09-25
		8 NR	1.5-3 NR	0.09-5	358	77	0.0000001-6	0.09-5
	NR	8 NR	1.5-3 NR					
Exposure Type	NR	NR	NR	0.09-5 NR	358 3	77 NR	0.0000001-6 0.0015-0.06	0.09-5 0.1-10
Exposure Type Eye Area	NR 12	NR 1	NR 0.015-3.75	0.09-5 NR	358 3	77 NR	0.0000001-6 0.0015-0.06 0.0021-3.8	0.09-5 0.1-10 0.09-10
Exposure Type	NR	NR	NR	0.09-5 NR	358 3	77 NR	0.0000001-6 0.0015-0.06	0.09-5 0.1-10
Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder	12 1 24 ^a ; 21 ^c	1 NR 13 ^a ; 3 ^c	NR 0.015-3.75 NR 0.5-2.5 ^a 0.019-5 ^b	0.09-5 NR 1-5 NR 0.1-10 ^a ; 0.1-5 ^c	358 3 75 13 2; 635 ^a ; 338 ^c 7; 10 ^b ; 338 ^c	77 NR 35 NR 93 ^a ; 59 ^c 59 ^c	0.0000001-6 0.0015-0.06 0.0021-3.8 0.2-0.4 0.0025-0.8h; 0.0005-4 ^a ; 2.4 ^c 0.053; 0.018-3.7 ^b ; 2.4 ^c	0.09-5 0.1-10 0.09-10 0.09-5 0.1-10 ^a 0.09-5
Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact	12 1 24 ^a ; 21 ^c 21 ^c 76	NR 1 NR 13 ^a ; 3 ^c 3 ^c 29	NR 0.015-3.75 NR 0.5-2.5 ^a 0.019-5 ^b 0.008-5	0.09-5 NR 1-5 NR 0.1-10 ^a ; 0.1-5 ^c 0.1-5 ^c 0.09-10	358 3 75 13 2; 635 ^a ; 338 ^c 7; 10 ^b ; 338 ^c 1302	77 NR 35 NR 93 ^a ; 59 ^c 59 ^c 297	0.0000001-6 0.0015-0.06 0.0021-3.8 0.2-0.4 0.0025-0.8 ^h ; 0.0005-4 ^a ; 2.4 ^c 0.053; 0.018-3.7 ^b ; 2.4 ^c 0.00009-6	0.09-5 0.1-10 0.09-10 0.09-5 0.1-10 ^a 0.09-5 0.09-10
Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm)	12 1 24 ^a ; 21 ^c 21 ^c 76 NR	1 NR 13 ^a ; 3 ^c 3 ^c 29 NR	NR 0.015-3.75 NR 0.5-2.5 ^a 0.019-5 ^b 0.008-5 NR	0.09-5 NR 1-5 NR 0.1-10 ^a ; 0.1-5 ^c 0.1-5 ^c 0.09-10 NR	358 3 75 13 2; 635 ^a ; 338 ^c 7; 10 ^b ; 338 ^c 1302 1 ^a	77 NR 35 NR 93 ^a ; 59 ^c 59 ^c 297 NR	0.0000001-6 0.0015-0.06 0.0021-3.8 0.2-0.4 0.0025-0.8 ^h ; 0.0005-4 ^a ; 2.4 ^c 0.053; 0.018-3.7 ^b ; 2.4 ^c 0.00009-6 0.02 ^f	0.09-5 0.1-10 0.09-10 0.09-5 0.1-10 ^a 0.09-5 0.09-10 NR
Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring	NR 12 1 24 ^a ; 21 ^c 21 ^c 76 NR 1	1 NR 13 ^a ; 3 ^c 3 ^c 29 NR 2	NR 0.015-3.75 NR 0.5-2.5 ^a 0.019-5 ^b 0.008-5 NR 0.8-2.5	0.09-5 NR 1-5 NR 0.1-10 ^a ; 0.1-5 ^c 0.1-5 ^c 0.09-10 NR 0.09-5	358 3 75 13 2; 635 ^a ; 338 ^c 7; 10 ^b ; 338 ^c 1302 1 ^a 156	77 NR 35 NR 93 ^a ; 59 ^c 59 ^c 297 NR 22	0.0000001-6 0.0015-0.06 0.0021-3.8 0.2-0.4 0.0025-0.8h; 0.0005-4a; 2.4c 0.053; 0.018-3.7b; 2.4c 0.00009-6 0.02f 0.0000001-5	0.09-5 0.1-10 0.09-10 0.09-5 0.1-10 ^a 0.09-5 0.09-10 NR 0.1-25
Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring Hair-Coloring	12 1 24 ^a ; 21 ^c 21 ^c 76 NR 1 NR	1 NR 13 ^a ; 3 ^c 3 ^c 29 NR 2 NR	0.015-3.75 NR 0.5-2.5 ^a 0.019-5 ^b 0.008-5 NR 0.8-2.5 NR	0.09-5 NR 1-5 NR 0.1-10 ^a ; 0.1-5 ^c 0.1-5 ^c 0.09-10 NR 0.09-5 NR	358 3 75 13 2; 635 ^a ; 338 ^c 7; 10 ^b ; 338 ^c 1302 1 ^a 156 107	77 NR 35 NR 93 ^a ; 59 ^c 59 ^c 297 NR 22 1	0.0000001-6 0.0015-0.06 0.0021-3.8 0.2-0.4 0.0025-0.8h; 0.0005-4a; 2.4c 0.053; 0.018-3.7h; 2.4c 0.00009-6 0.02f 0.0000001-5 0.0002-2.5	0.09-5 0.1-10 0.09-10 0.09-5 0.1-10 ^a 0.09-5 0.09-10 NR 0.1-25 1-5
Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring Hair-Coloring Nail	12 1 24 ^a ; 21 ^c 21 ^c 76 NR 1 NR	1 NR 13 ^a ; 3 ^c 3 ^c 29 NR 2 NR 1	0.015-3.75 NR 0.5-2.5 ^a 0.019-5 ^b 0.008-5 NR 0.8-2.5 NR	0.09-5 NR 1-5 NR 0.1-10 ^a ; 0.1-5 ^c 0.09-10 NR 0.09-5 NR 0.1-5	358 3 75 13 2; 635 ^a ; 338 ^c 7; 10 ^b ; 338 ^c 1302 1 ^a 156 107 2	77 NR 35 NR 93°; 59° 59° 297 NR 22 1 5	0.0000001-6 0.0015-0.06 0.0021-3.8 0.2-0.4 0.0025-0.8h; 0.0005-4a; 2.4e 0.053; 0.018-3.7h; 2.4c 0.00009-6 0.02f 0.0000001-5 0.002-2.5 3.5	0.09-5 0.1-10 0.09-10 0.09-5 0.1-10 ^a 0.09-5 0.09-10 NR 0.1-25 1-5 0.1-5
Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring Hair-Coloring	12 1 24 ^a ; 21 ^c 21 ^c 76 NR 1 NR	1 NR 13 ^a ; 3 ^c 3 ^c 29 NR 2 NR	0.015-3.75 NR 0.5-2.5 ^a 0.019-5 ^b 0.008-5 NR 0.8-2.5 NR	0.09-5 NR 1-5 NR 0.1-10 ^a ; 0.1-5 ^c 0.1-5 ^c 0.09-10 NR 0.09-5 NR	358 3 75 13 2; 635 ^a ; 338 ^c 7; 10 ^b ; 338 ^c 1302 1 ^a 156 107	77 NR 35 NR 93 ^a ; 59 ^c 59 ^c 297 NR 22 1	0.0000001-6 0.0015-0.06 0.0021-3.8 0.2-0.4 0.0025-0.8h; 0.0005-4a; 2.4c 0.053; 0.018-3.7h; 2.4c 0.00009-6 0.02f 0.0000001-5 0.0002-2.5	0.09-5 0.1-10 0.09-10 0.09-5 0.1-10 ^a 0.09-5 0.09-10 NR 0.1-25 1-5

Table 6. Current and historical frequency and concentration of use of polysorbates according to duration and exposure. ^{1,2,5,6,14,31}

			exposure.					
	# of U	Ises	Max Conc o	f Use (%)	# of U	^I ses	Max Conc of	Use (%)
	2015	1998	2014	1981	2015	1998	2014	1981
	2010			1,01	2010		-	1,01
			orbate 61			<u> </u>	sorbate 65	
Totals*	16	8	1-1.8	0.1-5	24	2	0.0003-3	1-5
Duration of Use								
Leave-On	16	8	1-1.8	0.1-5	21	NR	0.0003-3	NR
Rinse-Off	NR	NR	NR	0.1-5	3	2	0.002-0.15	1-5
Diluted for (Bath) Use	NR	NR	NR	NR	NR	NR	NR	NR
Exposure Type								
Eye Area	NR	NR	NR	NR	5	NR	0.5	NR
Incidental Ingestion	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Inhalation-Spray	9 ^a ; 5 ^c	4 ^c	NR	1-5 ^a ; 0.1-1 ^c		NR		
	9;5				7 ^a ; 8 ^c		NR	NR
Incidental Inhalation-Powder	1 ^b ; 5 ^c	3 ^b ; 4 ^c	1.8 ^b	1-5 ^b ; 0.1-1 ^c	8°	NR	0.003-3 ^b	NR
Dermal Contact	16	8	1-1.8	0.1-5	24	1	0.0003-3	1-5
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	$0.0003^{\rm f}$	NR
Hair - Non-Coloring	NR	NR	NR	NR	NR	1	NR	NR
Hair-Coloring	NR	NR	NR	NR	NR	NR	NR	NR
Nail	NR	NR	NR	NR	NR	NR	0.002-0.003	NR
Mucous Membrane	NR	NR	NR NR	NR	NR	NR	NR	NR
Baby Products	1	4	NR	1-5	NR	NR	NR	NR
	2015	1998	2014	1981	2015	1998	2014	1981
			sorbate 80				sorbate 81	
77. 4 1 4	022			0.01.55	***			0.1.
Totals*	932	231	0.00031-18.1	0.01-25	NR	4	0.4-25.6	0.1-5
Duration of Use	· 	·						
Leave-On	759	132	0.00031-11.9	0.01-10	NR	4	0.5-7.5	0.1-5
Rinse-Off	166	89	0.0038-18.1	0.09-10	NR	NR	0.4-25.6	0.1-5
Diluted for (Bath) Use	7	10	NR	0.1-25	NR	NR	5-7.5	NR
Exposure Type								
Eye Area	114	16	0.0024-11	0.09-5	NR	NR	0.5	NR
Incidental Ingestion	45	15	0.00031-1.5	0.09-1	NR	NR	NR	NR
metaentai ingestion		1		0.1-1;	IVIX	IVIX	IVIC	
T :1 + 1 T 1 1 +: 0	15; 315 ^a ;	16; 71 ^a ;	0.02-11.9 ⁱ ;		NID	1.8	_	0.1-5 ^a ;
Incidental Inhalation-Spray	196°	13°	0.0038-2ª	0.09-10 ^a ;	NR	1ª	5	0.1-1°
	170	15	0.0050 2	0.09-10°				0.1 1
	10.2b.		0.42-2;	1-10;				
Incidental Inhalation-Powder	18;2 ^b ; 196 ^c	7; 13°		0.09-10 ^b ;	NR	NR	5 ^b	0.1-1 ^c
	196		0.005-2°	0.09-10 ^c				
Dermal Contact	731	122	0.00075-18.1	0.01-25	NR	3	0.5-25.6	0.1-1
Deodorant (underarm)	1 ^a	NR	NR	0.01-23 0.09-1 ^a	NR	NR	NR	NR
	-					i		
Hair - Non-Coloring	118	80	0.02-10	0.09-10	NR	1	0.4	0.1-5
Hair-Coloring	25	10	0.36	NR	NR	NR	NR	NR
Nail	7	2	NR	0.1-1	NR	NR	7.5	NR
Mucous Membrane	75	29	0.00031-1.5	0.09-25	NR	NR	5-7.5	NR
Baby Products	4	4	10	0.1-10	NR	NR	NR	NR
	-						1	
	2015	1998	2014	1981	2015	1998	2014	1998
		Polys	sorbate 85				bitan isostearate	
Totals*	51			0.01->50]		, ,	
	51	Polys 35	0.03-21.9	0.01->50		PEG-20 sor	bitan isostearate 0.3	
Duration of Use		35	0.03-21.9		3	PEG-20 sor 2	0.3	NR
Duration of Use Leave-On	23	35 28	0.03-21.9 0.03-6	0.01-10	3	PEG-20 sor 2	0.3	NR NR
Duration of Use Leave-On		35	0.03-21.9		3	PEG-20 sor 2	0.3	NR
Duration of Use Leave-On Rinse-Off	23 15	28 7	0.03-21.9 0.03-6 5.5-21.9	0.01-10 0.09->50	3 NR	PEG-20 sor 2 2 NR	0.3 NR	NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use	23	35 28	0.03-21.9 0.03-6	0.01-10	3	PEG-20 sor 2	0.3	NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type	23 15 13	28 7 NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055	0.01-10 0.09->50 NR	3 3 NR NR	PEG-20 sor 2 2 NR NR	0.3 0.3 NR NR	NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area	23 15 13	35 28 7 NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR	0.01-10 0.09->50 NR	3 NR NR NR	PEG-20 sor 2 2 NR NR NR	0.3 NR NR NR	NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area	23 15 13	28 7 NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055	0.01-10 0.09->50 NR	3 3 NR NR	PEG-20 sor 2 2 NR NR	0.3 0.3 NR NR	NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion	23 15 13 4 NR	35 28 7 NR 5 NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ;	3 NR NR NR	PEG-20 sor 2 NR NR NR NR	0.3 NR NR NR	NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion	23 15 13	35 28 7 NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR	0.01-10 0.09->50 NR 0.09-5 NR	3 NR NR NR	PEG-20 sor 2 2 NR NR NR	0.3 NR NR NR	NR NR NR NR NR
Totals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray	23 15 13 4 NR 1; 6 ^a ; 5 ^c	28 7 NR 5 NR NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c	3 NR NR NR NR NR 1 ^a ; 2 ^c	PEG-20 son 2 NR NR NR NR 1a	0.3 NR NR NR NR	NR NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion	23 15 13 4 NR	35 28 7 NR 5 NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ;	3 NR NR NR	PEG-20 sor 2 NR NR NR NR	0.3 NR NR NR	NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder	23 15 13 4 NR 1; 6°; 5°	28 7 NR 5 NR NR NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR 0.06-0.54 ^b	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ; 0.1-1 ^c	3 NR NR NR NR 1a; 2c 2c	2	0.3 NR NR NR NR NR NR O.3 ^b	NR NR NR NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact	23 15 13 4 NR 1; 6 ^a ; 5 ^c 1; 5 ^c 51	28 7 NR 5 NR NR NR 30	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR 0.06-0.54 ^b 0.03-21.9	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ; 0.1-1 ^c 0.01-10	3 NR NR NR NR 1a; 2c 2c 3	2	0.3 NR NR NR NR NR 0.3 ^b 0.3	NR NR NR NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm)	23 15 13 4 NR 1; 6 ^a ; 5 ^c 1; 5 ^c 51 NR	28 7 NR 5 NR NR NR NR NR NR	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR 0.06-0.54 ^b 0.03-21.9 NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ; 0.1-1 ^c 0.01-10 NR	3 NR NR NR NR NR 1 ^a ; 2 ^c 2 ^c 3 NR	2	0.3 NR NR NR NR NR NR NR NR NR N	NR NR NR NR NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring	23 15 13 4 NR 1; 6 ^a ; 5 ^c 1; 5 ^c 51 NR NR	28 7 NR 5 NR NR NR NR 30 NR 4	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR NR NR NR 0.06-0.54 ^b 0.03-21.9 NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ; 0.1-1 ^c 0.01-10 NR 0.01-5	3 NR NR NR NR NR 1 ^a ; 2 ^c 2 ^c 3 NR NR	PEG-20 son 2 NR NR NR NR NR NR NR NR NR NR NR	0.3 NR NR NR NR NR NR NR NR NR 0.3 ^b 0.3 NR NR	NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring	23 15 13 4 NR 1; 6°; 5° 1; 5° 51 NR NR	28 7 NR 5 NR NR NR NR NR 1 30 NR 4 1	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR 0.06-0.54 ^b 0.03-21.9 NR NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ; 0.1-1 ^c 0.01-10 NR 0.01-5 >50	3 NR NR NR NR 1a; 2c 2c 3 NR NR NR	2	0.3 NR NR NR NR NR NR NR NR NR N	NR NR NR NR NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring Hair-Coloring	23 15 13 4 NR 1; 6°; 5° 1; 5° 51 NR NR	28 7 NR 5 NR NR NR NR 30 NR 4	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR NR NR NR 0.06-0.54 ^b 0.03-21.9 NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ; 0.1-1 ^c 0.01-10 NR 0.01-5	3 NR NR NR NR NR 1 ^a ; 2 ^c 2 ^c 3 NR NR	PEG-20 son 2 NR NR NR NR NR NR NR NR NR NR NR	0.3 NR NR NR NR NR NR NR NR NR N	NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring Hair-Coloring Nail	23 15 13 4 NR 1; 6 ^a ; 5 ^c 1; 5 ^c 51 NR NR NR	28 7 NR 5 NR NR NR NR 1	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR NR NR 0.06-0.54 ^b 0.03-21.9 NR NR NR NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1b, 0.1-1 ^c 0.01-10 NR 0.01-5 >50 NR	3 NR NR NR NR 1a; 2c 2c 3 NR NR NR NR NR NR NR NR	2	0.3 NR NR NR NR NR NR NR NR NR N	NR NR NR NR NR NR NR NR NR NR
Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring Hair-Coloring	23 15 13 4 NR 1; 6°; 5° 1; 5° 51 NR NR	28 7 NR 5 NR NR NR NR NR 1 30 NR 4 1	0.03-21.9 0.03-6 5.5-21.9 0.03-0.055 NR NR NR 0.06-0.54 ^b 0.03-21.9 NR NR NR	0.01-10 0.09->50 NR 0.09-5 NR 0.01-10 ^a ; 0.1-1 ^c 0.01-1 ^b ; 0.1-1 ^c 0.01-10 NR 0.01-5 >50	3 NR NR NR NR 1a; 2c 2c 3 NR NR NR	PEG-20 son 2 NR NR NR NR NR NR NR NR NR NR	0.3 NR NR NR NR NR NR NR NR NR N	NR NR NR NR NR NR NR NR NR NR

Table 6. Current and historical frequency and concentration of use of polysorbates according to duration and exposure. ^{1,2,5,6,14,31}

			спровите				:	
		Uses	Max Conc o		# of U		Max Conc of	
	2014	1998	2014	1998	2015	1998	2014	1998
			rbitan lanolate		ļ		sorbitan laurate	
Totals*	NR	7	NR	NR	2	2	NR	NR
Duration of Use								
Leave-On	NR	4	NR	NR	1	NR	NR	NR
Rinse-Off	NR	3	NR	NR	1	2	NR	NR
Diluted for (Bath) Use	NR	NR	NR	NR	NR	NR	NR	NR
Exposure Type					•			
Eye Area	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Ingestion	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Inhalation-Spray	NR	1ª	NR	NR	1 ^a	NR	NR	NR
Incidental Inhalation-Powder	NR	NR	NR	NR	NR	NR	NR	NR
Dermal Contact	NR	NR	NR	NR	2	NR	NR	NR
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	NR	NR
Hair - Non-Coloring	NR	5	NR	NR	NR	1	NR	NR
Hair-Coloring	NR	2	NR	NR	NR	NR	NR	NR
Nail	NR	NR	NR	NR	NR	1	NR	NR
Mucous Membrane	NR	NR	NR	NR	NR	NR	NR	NR
Baby Products	NR	NR	NR	NR	NR	NR	NR	NR
		1 1.12	1122		1120	1		. 1110
	2015	1998	2014	1998	2015	1998	2014	1998
		PEG-44 so	orbitan laurate			PEG-80 s	sorbitan laurate	
Fotals*	3	8	0.5-2	NR	93	34	0.0002-4.2	NR
Duration of Use		-						
Leave-On	1	6	2	NR	20	6	0.0002-0.059	NR
Rinse-Off	2	2	0.5	NR NR	60	28	2-4.2	NR
Diluted for (Bath) Use	NR	NR	NR	NR	13	NR	2.5	NR
Exposure Type	7470	1414	1110	7171	13	7171	2.3	1111
	ND	ND	ND	ND	NID	ND	ND	ND
Eye Area	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Ingestion	NR 1ª	NR 1ª	NR	NR	1	NR	0.059	NR
Incidental Inhalation-Spray		- i	NR	NR	NR	NR	NR	NR
Incidental Inhalation-Powder	NR	NR	NR	NR	NR 70	NR	0.0002-0.0098 ^b	NR
Dermal Contact	3	8	2	NR	70 ND	14	0.0002-4.2	NR
Deodorant (underarm)	NR	NR	NR 0.5	NR	NR 22	NR 20	NR 4.2	NR
Hair - Non-Coloring	NR	NR		NR		20	1	NR
Hair-Coloring	NR	NR ND	NR NB	NR	NR	NR	NR NB	NR
Nail	NR	NR	NR	NR	NR	NR	NR 0.050.4.2	NR
Mucous Membrane	NR	NR ND	NR	NR	36	2	0.059-4.2	NR
Baby Products	NR	NR	NR	NR	33	15	4.2	NR
	2015	1998	2014	1998	2015	1998	2014	1998
	2015		orbitan oleate	1,770			orbitan peroleate	1,,,0
Totals*	1	4	NR	NR	53	13	0.16-4	NR
Duration of Use		<u> </u>	1111	1111	30	10	0.10	.,,,,
Leave-On	1	4	NR	NR	51	8	0.16-4	NR
Rinse-Off	NR	NR	NR NR	NR NR	2	NR	0.10-4 NR	NR NR
Diluted for (Bath) Use	NR NR	NR NR	NR NR	NR NR	NR	5 NK	NR NR	NR
Exposure Type	111	11/1	IVI	111	IVI	J	IVI	1111
Exposure Type Eve Area	VID	NID	VD	ND	8	NID	ND	NR
	NR NB	NR ND	NR NB	NR ND	NR	NR ND	NR NR	
Incidental Ingestion	NR 1ª	NR 1 ^a	NR NB	NR ND		NR 6 ^a ; 1 ^c	NR 4ª	NR ND
Incidental Inhalation-Spray Incidental Inhalation-Powder	NR	NR	NR NR	NR NR	14 ^a ; 13 ^c 13 ^c	6; 1 1; 1 ^c	0.3-0.9 ^b	NR NR
Dermal Contact								
Deodorant (underarm)	1 ND	3 NID	NR ND	NR ND	50 ND	13 ND	0.16-1 ND	NR ND
	NR ND	NR 1	NR NB	NR NB	NR 2	NR NB	NR 4	NR
Hair - Non-Coloring	NR	1 ND	NR	NR NB	3	NR	4	NR
Hair-Coloring	NR	NR ND	NR NB	NR	NR NB	NR	NR NB	NR
	NR	NR	NR	NR	NR	NR	NR	NR
		ND	N.T.D.) ATD	A I ID			
Nail Mucous Membrane Baby Products	NR NR	NR NR	NR NR	NR NR	NR NR	5 NR	NR NR	NR NR

Table 6. Current and historical frequency and concentration of use of polysorbates according to duration and exposure. ^{1,2,5,6,14,31}

	# of	Uses	Max Conc o	of Use (%)	# of U	Ises	Max Conc o	of Use (%)
	2015	1998	2014	1998	2015	1998	2014	1998
		PEG-40 so	rbitan stearate]	PEG-40 sort	oitan tetraoleat	e
Totals*	1	1	NR	NR	1	1	NR	NR
Duration of Use								
Leave-On	1	NR	NR	NR	1	1	NR	NR
Rinse-Off	NR	1	NR	NR	NR	NR	NR	NR
Diluted for (Bath) Use	NR	NR	NR	NR	NR	NR	NR	NR
Exposure Type								
Eye Area	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Ingestion	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Inhalation-Spray	NR	NR	NR	NR	1°	1 ^c	NR	NR
Incidental Inhalation-Powder	1 a	NR	NR	NR	1°	1°	NR	NR
Dermal Contact	1	1	NR	NR	1	1	NR	NR
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	NR	NR
Hair - Non-Coloring	NR	NR	NR	NR	NR	NR	NR	NR
	NR	NR	NR	NR	NR	NR	NR	NR
Hair-Coloring	1111			!) ID	3.77	NR	NR
	NR	NR	NR	NR	NR	NR	NK	INIX
Nail		NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR
Hair-Coloring Nail Mucous Membrane Baby Products	NR							
Nail Mucous Membrane	NR NR	NR	NR	NR	NR	NR	NR	NR
Nail Mucous Membrane	NR NR	NR	NR	NR	NR	NR	NR	NR
Nail Mucous Membrane	NR NR 1	NR NR 1998	NR NR	NR NR	NR	NR	NR	NR
Nail Mucous Membrane Baby Products	NR NR 1	NR NR 1998	NR NR 2014	NR NR	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals*	NR NR 1	NR NR 1998 Sorbeth	NR NR 2014 20 beeswax	NR NR	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use	NR NR 1	NR NR 1998 Sorbeth	NR NR 2014 20 beeswax	NR NR	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On	NR NR 1 2015	NR NR 1998 Sorbeth 16	NR NR 2014 1-20 beeswax 0.5-2.8	NR NR 1999 0.5-2.8	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On Rinse-Off	NR NR 1 2015	NR NR 1998 Sorbeth 16	NR NR 2014 1-20 beeswax 0.5-2.8	NR NR 1999 0.5-2.8	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use	NR NR 1 2015 9	NR NR 1998 Sorbeth 16	NR NR 2014 1-20 beeswax 0.5-2.8 0.5-2.8 NR	NR NR 1999 0.5-2.8	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Totals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type	NR NR 1 2015 9	NR NR 1998 Sorbeth 16	NR NR 2014 1-20 beeswax 0.5-2.8 0.5-2.8 NR	NR NR 1999 0.5-2.8	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Totals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area	NR NR 1 2015 9 NR NR	NR NR 1998 Sorbeth 16	NR NR 2014 -20 beeswax 0.5-2.8 0.5-2.8 NR NR	NR NR 1999 0.5-2.8	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Totals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion	NR NR 1 2015 9 NR NR 7	NR NR 1998 Sorbeth 16	NR NR 2014 -20 beeswax 0.5-2.8 NR NR NR	NR NR 1999 0.5-2.8 NR NR NR	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray	NR NR 1 2015 9 NR NR 7 1	NR NR 1998 Sorbeth 16 // NR NR	NR NR 2014 -20 beeswax 0.5-2.8 NR NR 2.8 2.5	NR NR 1999 0.5-2.8 NR NR NR 2.8 2.5	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder	NR NR 1 2015 9 9 NR NR 7 1 NR NR	NR NR NR NR NR NR NR NR	NR NR 2014 -20 beeswax 0.5-2.8 NR NR 2.8 2.5 NR 0.5-1 ^b	NR NR 1999 0.5-2.8 NR NR NR 2.8 2.5 NR	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact	NR NR 1 2015 9 9 NR NR 7 1 NR NR 1 NR	NR NR NR NR NR NR NR NR	NR NR 2014 -20 beeswax 0.5-2.8 0.5-2.8 NR NR 2.8 2.5 NR 0.5-1 ^b 0.5-1 NR	NR NR 1999 0.5-2.8 NR NR NR 2.8 2.5 NR NR NR 0.5-1	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Decodorant (underarm)	NR NR 1 2015 9 9 NR NR NR NR NR NR	NR NR NR NR NR NR NR NR	NR NR 2014 -20 beeswax 0.5-2.8 0.5-2.8 NR NR 2.8 2.5 NR 0.5-1 ^b 0.5-1 NR	NR NR 1999 0.5-2.8 NR NR 2.8 2.5 NR NR NR	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Fotals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Spray Incidental Inhalation-Powder Dermal Contact Decodorant (underarm) Hair - Non-Coloring Hair-Coloring	NR NR 1 2015 9 9 NR NR 7 1 NR NR 1 NR	NR NR NR NR NR NR NR NR	NR NR 2014 -20 beeswax 0.5-2.8 0.5-2.8 NR NR 2.8 2.5 NR 0.5-1 ^b 0.5-1 NR	NR NR 1999 0.5-2.8 NR NR NR 2.8 2.5 NR NR NR 0.5-1	NR	NR	NR	NR
Nail Mucous Membrane Baby Products Totals* Duration of Use Leave-On Rinse-Off Diluted for (Bath) Use Exposure Type Eye Area Incidental Ingestion Incidental Inhalation-Powder Dermal Contact Deodorant (underarm) Hair - Non-Coloring Hair-Coloring	NR NR 1 2015 9 9 NR NR NR NR NR NR	NR NR NR NR NR NR NR NR	NR NR 2014 1-20 beeswax 0.5-2.8 NR NR 2.8 2.5 NR 0.5-1 ^b 0.5-1 NR NR	NR NR 1999 0.5-2.8 NR NR NR 2.8 2.5 NR NR 0.5-1 NR NR	NR	NR	NR	NR
Nail Mucous Membrane	NR NR 1 2015 9 NR NR NR NR NR NR NR	NR NR NR NR NR NR NR NR	NR NR 2014 -20 beeswax 0.5-2.8 0.5-2.8 NR NR 2.8 2.5 NR 0.5-1 ^b 0.5-1 NR NR	NR NR 1999 0.5-2.8 NR NR NR 2.8 2.5 NR NR 0.5-1 NR NR	NR	NR	NR	NR

NR - no reported use

^{*} Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

^{**} The year that the Council survey was conducted in the previous report. In the report published in 2000, the only concentration of use data that were provided was the following: "...PEG-60 sorbitan tetratoleate, PEG-40 sorbitan tetratoleate, and PEG-160 sorbitan Triisostearate are used in cosmetics at concentrations of 0.5% to 10%..." in 1998. Since the data from the 2000 report is limited, the concentration of use data from the 1984 report are provided here to give a better historical perspective.

^{***} At the time of the 1984 safety assessment, concentration of use data were not reported by the FDA; 1981 data were presented. These data were presented in ranges so the limits of the ranges are represented here.

^a It is possible these products are sprays, but it is not specified whether the reported uses are sprays.

b It is possible these products are powders, but it is not specified whether the reported uses are powders.

^c Not specified whether a spray or a powder, but it is possible the use can be as a spray or a powder, therefore the information is captured in both categories.

^d Aerosol hair spray 0.027%-3%; pump hair spray 0.4%-1%; spray body and hand products 0.00001%-1.2%; spray moisturizing products 0.1%.

e Spray deodorants.

f Not spray deodorants.

g Aerosol hair spray.

^h Spray body and hand products 0.083%-0.8%.

ⁱ Aerosol hair spray 0.078%-1.6%; pump hair spray 0.02%-0.2%; spray face and neck products 0.39%.

Table 7. Frequency of use according to duration and exposure of polysorbates that are reviewed for the first time in this safety assessment.^{5,31,32}

Use type	Uses	Maximum Concentration (%)	Uses	Maximum Concentration (%)	Uses	Maximum Concentratio n (%) 40 sorbitan	Uses	Maximum Concentration (%)
	PEG-30	sorbitan beeswax	PEG-20	sorbitan cocoate		-40 sorbitan sostearate	PEG-20	sorbitan laurate
Total/range	1	NR	14	0.03-0.3	2	1	1	NS
Duration of use								
Leave-on	1	NR	12	0.03-0.3	2	1	NS	NS
Rinse-off	NR	NR	2	0.06	NR	NR	1	NS
Diluted for (bath) use	NR	NR	NR	NR	NR	NR	NS	NS
Exposure type*								
Eye area	1	NR	1	NR	NR	NR	NS	NS
Incidental ingestion	NR	NR	NR	NR	NR	NR	NS	NS
Incidental Inhalation-sprays	NR	NR	6 ^a ; 3 ^c	NR	2ª	1 ^a	NS	NS
Incidental inhalation-powders	NR	NR	3°	0.03-0.3 ^b	NR	NR	NS	NS
Dermal contact	1	NR	14	0.03-0.3	2	NR	1	NS
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	NS	NS
Hair-noncoloring	NR	NR	NR	NR	NR	1	NS	NS
Hair-coloring	NR	NR	NR	NR	NR	NR	NS	NS
Nail	NR	NR	NR	NR	NR	NR	NS	NS
Mucous Membrane	NR	NR	NR	NR	NR	NR	NS	NS
Baby	NR	NR	NR	NR	NR	NR	NS	NS
	PEG-40	sorbitan laurate	PEG-75	sorbitan laurate	PEG-6 s	orbitan oleate	PEG-4	sorbitan stearate
Total/range	NR	0.25-2	NR	0.5-2	NR	0.43	NR	0.00025-1.5
Duration of use								
Leave-on	NR	2	NR	NR	NR	0.43	NR	0.028-1.5
Rinse-off	NR	0.25-0.5	NR	0.5-2	NR	NR	NR	0.00025
Diluted for (bath) use	NR	NR	NR	NR	NR	NR	NR	NR
Exposure type								
Eye area	NR	NR	NR	NR	NR	NR	NR	NR
Incidental ingestion	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Inhalation-sprays	NR	NR	NR	NR	NR	NR	NR	0.028; 0.1 ^a
Incidental inhalation-powders	NR	NR	NR	NR	NR	NR	NR	NR
Dermal contact	NR	2	NR	2	NR	0.43	NR	0.028-1.5
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	NR	0.2 ^d
Hair-noncoloring	NR	0.5	NR	0.5	NR	NR	NR	0.00025-0.29
Hair-coloring	NR	0.25	NR	NR	NR	NR	NR	NR
Nail	NR	NR	NR	NR	NR	NR	NR	NR
Mucous Membrane	NR	NR	NR	NR	NR	NR	NR	NR
Doby	NID	ND	NID	ND	NID	ND	NID	1.5

Baby

NR

NR

NR

NR

NR

NR

NR

1.5

Table 7. Frequency of use according to duration and exposure of polysorbates that are reviewed for the first time in this safety assessment. 5,31,32

Use type	Uses	Maximum Concentration (%)	Uses	Maximum Concentration (%)	Uses	Maximum Concentratio n (%)	Uses	Maximum Concentration (%)
	PEG-3 s	orbitan stearate	PEG-6	sorbitan stearate	_	-20 sorbitan stearate		-30 sorbitan traoleate
Total/range	3	NR	2	3.4	1	NS	1	10
Duration of use								
Leave-on	2	NR	NR	NR	1	NS	NR	NR
Rinse-off	1	NR	2	3.4	NR	NS	1	10
Diluted for (bath) use	NR	NR	NR	NR	NR	NS	NR	NR
Exposure type								
Eye area	NR	NR	NR	NR	NR	NS	NR	NR
Incidental ingestion	NR	NR	NR	NR	NR	NS	NR	NR
Incidental Inhalation-sprays	NR	NR	NR	NR	NR	NS	NR	NR
Incidental inhalation-powders	NR	NR	NR	NR	NR	NS	NR	NR
Dermal contact	3	NR	2	3.4	1	NS	1	10
Deodorant (underarm)	NR	NR	NR	NR	NR	NS	NR	NR
Hair-noncoloring	NR	NR	NR	NR	NR	NS	NR	NR
Hair-coloring	NR	NR	NR	NR	NR	NS	NR	NR
Nail	NR	NR	NR	NR	NR	NS	NR	NR
Mucous Membrane	NR	NR	NR	NR	NR	NS	NR	NR
Baby	NR	NR	NR	NR	NR	NS	NR	NR

		60 sorbitan raoleate		60 sorbitan ostearate	Sorbeth	1-6 beeswax		beth-30 sostearate
Total/range	NR	0.5-0.9	4	NR	7	2	1	NR
Duration of use								
Leave-on	NR	0.5-0.9	NR	NR	7	2	1	NR
Rinse-off	NR	NR	4	NR	NR	NR	NR	NR
Diluted for (bath) use	NR	NR	NR	NR	NR	NR	NR	NR
Exposure type								
Eye area	NR	NR	NR	NR	3	NR	NR	NR
Incidental ingestion	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Inhalation-sprays	NR	0.5-0.8 ^a	NR	NR	NR	NR	1°	NR
Incidental inhalation-powders	NR	$0.9^{\rm c}$	NR	NR	NR	NR	1°	NR
Dermal contact	NR	0.8-0.9	1	NR	7	2	1	NR
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	NR	NR
Hair-noncoloring	NR	0.5	3	NR	NR	NR	NR	NR
Hair-coloring	NR	NR	NR	NR	NR	NR	NR	NR
Nail	NR	NR	NR	NR	NR	NR	NR	NR
Mucous Membrane	NR	NR	1	NR	NR	NR	NR	NR
Baby	NR	NR	NR	NR	NR	NR	NR	NR

Table 7. Frequency of use according to duration and exposure of polysorbates that are reviewed for the first time in this safety assessment.^{5,31,32}

		Maximum Concentration		Maximum Concentration		Maximum Concentratio		Maximum Concentration
Use type	Uses	(%)	Uses	(%)	Uses	n (%)	Uses	(%)
	Sorbet	h-4 tetraoleate	Sorbe	th-6 tetraoleate	Sorbeth	-30 tetraoleate	Sorbeth	1-40 tetraoleate
Total/range	4	NR	NR	0.21	10	0.11-10.8	2	0.5
Duration of use								
Leave-on	4	NR	NR	0.21	4	NR	1	0.5
Rinse-off	NR	NR	NR	NR	6	0.11-10.8	1	NR
Diluted for (bath) use	NR	NR	NR	NR	NR	NR	NR	NR
Exposure type								
Eye area	NR	NR	NR	NR	NR	NR	NR	NR
Incidental ingestion	NR	NR	NR	NR	NR	NR	NR	NR
Incidental Inhalation-sprays	NR	NR	NR	NR	NR	NR	1 ^b	NR
Incidental inhalation-powders	NR	NR	NR	0.21	NR	NR	1 ^b	0.5°
Dermal contact	4	NR	NR	0.21	10	0.11-10.8	2	0.5
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	NR	NR
Hair-noncoloring	NR	NR	NR	NR	NR	NR	NR	NR
Hair-coloring	NR	NR	NR	NR	NR	NR	NR	NR
Nail	NR	NR	NR	NR	NR	NR	NR	NR
Mucous Membrane	NR	NR	NR	NR	NR	NR	NR	NR
Baby	NR	NR	NR	NR	NR	NR	NR	NR

	Sorbeth-60 to	etraoleate
Total/range	1	NR
Duration of use		
Leave-on	1	NR
Rinse-off	NR	NR
Diluted for (bath) use	NR	NR
Exposure type		
Eye area	NR	NR
Incidental ingestion	NR	NR
Incidental Inhalation-sprays	1 ^a	NR
Incidental inhalation- powders	NR	NR
Dermal contact	1	NR
Deodorant (underarm)	NR	NR
Hair-noncoloring	NR	NR
Hair-coloring	NR	NR
Nail	NR	NR
Mucous Membrane	NR	NR
Baby	NR	NR

NR = Not Reported; NS = Not Surveyed; Totals = Rinse-off + Leave-on Product Uses. Note: Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure type uses may not equal the sum total uses.

*Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

a It is possible these products may be sprays, but it is not specified whether the reported

uses are sprays.

b Not specified whether a powder or a spray, so this information is captured for both

categories of incidental inhalation.

^c It is possible these products <u>may</u> be powders, but it is not specified whether the reported uses are powders.

^d Not spray products.

Table 8. Ingredients for which there were no reported current or historic uses from the VCRP or the Council. 5,31

PEG-2 sorbitan isostearate	Sorbeth-40 hexaoleate
PEG-5 sorbitan isostearate	Sorbeth-50 hexaoleate
PEG-75 sorbitan lanolate	Sorbeth-6 hexastearate
PEG-20 sorbitan oleate	Sorbeth-150 hexastearate
PEG-40 sorbitan oleate	Sorbeth-3 isostearate
PEG-80 sorbitan palmitate	Sorbeth-6 laurate
PEG-40 sorbitan perisostearate	Sorbeth-2/oleate/dimer dilinoleate crosspolymer
PEG-60 sorbitan stearate	Sorbeth-20 pentaisostearate
PEG-60 sorbitan tetrastearate	Sorbeth-30 pentaisostearate
PEG-4 sorbitan triisostearate	Sorbeth-40 pentaisostearate
PEG-20 sorbitan triisostearate	Sorbeth-50 pentaisostearate
PEG-2 sorbitan trioleate	Sorbeth-40 pentaoleate
PEG-3 sorbitan tristearate	Sorbeth-20 tetraisostearate
Sorbeth-2 beeswax	Sorbeth-40 tetraisostearate
Sorbeth-8 beeswax	Sorbeth-50 tetraisostearate
Sorbeth-2 cocoate	Sorbeth-30 tetraoleate laurate
Sorbeth-2 hexacaprylate/caprate	Sorbeth-60 tetrastearate
Sorbeth-12 hexacocoate	Sorbeth-3 tristearate
Sorbeth-2 hexaisostearate	Sorbeth-160 tristearate
Sorbeth-2 hexalaurate	Sorbeth-450 tristearate
Sorbeth-2 hexaoleate	

Table 9. U. S. regulations controlling the use of polysorbates.

Ingredient	Regulation	Citation
· ·	Ÿ	
Polysorbate 20, 60, 65, and 80	Approved as diluents in color additives for drug use.	21CFR73.1;
		21CFR73.1001
Polysorbates 20, 60, and 80	Approved for direct use in all food types as synthetic flavorings.	21CFR172.623
Polysorbate 80	Approved to be used with carrageenan to make chewing gum bases and related	21CFR172.623
	substances.	
Polysorbate 60, 65, and 80	Approved as multipurpose additives.	21CFR172.836;
		21CFR172.838;
		21CFR172.840
Polysorbate 20	Permitted as a secondary direct food additive for human consumption.	21CFR173.310
Polysorbate 60, 65, and 80	Approved as defoaming agents in food for human consumption.	21CFR173.340
Polysorbate 20, 40, 60, and 80; PEG-3 sorbitan	Approved for indirect addition to all food types as components of adhesives.	21 CFR 175.105
stearate; and PEG-3 sorbitan oleate		
PEG-40 sorbitan laurate, PEG-6 sorbitan stearate,	May be used as indirect food additives as a defoaming agent in the manufacture	21CFR176.210
PEG-40 sorbitan stearate, PEG-6 sorbitan oleate,	of paper and paperboard.	
PEG-40 sorbitan tetraoleate, and PEG-40 sorbitan		
peroleate		
Polysorbate 20, 40, 60, 65, 80, and 85, and PEG-3	Approved for indirect addition to all food types as emulsifiers and/or surfactants.	21CFR178.3400
sorbitan oleate		
PEG-3 sorbitan oleate	May be used as a component of paper and paperboard in contact with dry food.	21CFR180
Polysorbate 80	Approved as an ophthalmic demulcent.	21CFR349.12
Polysorbate 60 and 80	Approved for use in animal feed and drinking water.	21CFR573.840;
•		21CFR573.860
Polysorbate 80	May be used to denature spirits.	27CFR21.68;
•	,	27CFR21.151

Table 10. Penetration enhancement studies of some polysorbates. 42

Ingredient (concentration)	Chemical/drug tested	Results; notes
Polysorbate 20 (5%)	Albuterol sulfate	ER compared to control (saline buffer)=3.43±0.52; ER compared to vehicle (ethanol)=1.26±0.32. Thawed, hairless mouse skin pretreated with test substance using Franz cells.
Polysorbate 65 (5%)	Albuterol sulfate	ER compared to control (saline buffer)=4.74±0.23; ER compared to vehicle (ethanol)=1.75±0.29. Thawed, hairless mouse skin pretreated with test substance using Franz cells.
Polysorbate 80 (5%)	Albuterol sulfate	ER compared to control (saline buffer)=2.95±0.45; ER compared to vehicle (ethanol)=1.09±0.17. Thawed, hairless mouse skin pretreated with test substance using Franz cells.

ER=Enhancement ratio

Table 11. Highest reported historic NOAELs for polysorbate 20 and polysorbate 80 reported in a survey of 4 research laboratories. 44

Animal	Route	Duration	Dose	Comments
		Polysorba	te 20	
Rat	Oral	1 month	250 mg/kg	Well tolerated
	Oral	90 days	500 mg/kg	Diarrhea
Mouse	Oral	1 month	10 mg/kg	Well tolerated
		Polysorba	te 80	
Dog	Oral	90 days	5 mL/kg	As 1% of formulation; well tolerated
Rat	Oral	Not reported	350 mg/kg	Well tolerated
	Oral	4 weeks	5 mL/kg	1%; well tolerated
	Oral	7 days	10 mL/kg	1%; well tolerated
	Intravenous	Not reported	100 mg/kg	Well tolerated
Mouse	Intraperitoneal	1 month	10 mL/kg	2%; well tolerated
	Intranasal	3 days	10 μL/nostril	0.2%; well tolerated
Primate	Oral	Efficacy (distinct time not indicated.)	5 mL/kg	1%; well tolerated

Table 12. In vivo animal and human irritation studies of some polysorbates.

Ingredient (concentration)	Assay	Results; notes	Reference
	Anim	al studies	
Polysorbate 60 (5% and 10% aqueous)	Daily skin-painting study for 30 days on rabbits	Moderate irritation observed at 5%; skin necrosis occurred at 10%.	24
Polysorbate 60 (15% aqueous)	Daily skin-painting study for 60 days on rabbits	No dermal effects at 15%; mild irritation at 100%.	24
Polysorbate 60 (100%)	Long-term (time not specified) dermal administration on mice	Local inflammation.	24
Sorbitan monolaurate, ethoxylated (100%; 0.5mL)	Draize test using New Zealand White Rabbits (n=3). The test sites were observed at 1, 24, 48, and 72 h and 7 days.	Draize score of 0.89. Scaliness was observed in all 3 animals at 72 h after exposure and in 1 rabbit at 7 days after exposure.	22
Sorbitan monostearate, ethoxylated (5% and 10% aqueous)	Dermally administered to rabbits (n not specified) for 30 days.	Necrosis of the skin at 10%. Necrosis was reversible after stopping treatment. Moderate irritation was observed at 5%.	24
Sorbitan monostearate, ethoxylated (100%)	Dermally administered to rabbits (n not specified) for 60 days.	Did not cause irritation.	24
Sorbitan monostearate, ethoxylated (100%; 0.5 g)	Dermally administered to the shaved backs (approximately 6 cm²) of New Zealand white rabbits (n=3) for 4 h under occlusion. The test site was observed for 14 days after removal.	Did not produce any skin reaction. The irritation score was 0.8 out of 8.	24
	Huma	n studies	
Polysorbate 60 (concentration not specified in a cream or 100%)	Administered to the forehead, dorsal, and arm skin. Amount and n not specified.	Urticaria observed at application sites at 20 min caused by both polysorbate 60-based cream and polysorbate 60. There was no effect of either the polysorbate 60 or the cream on the dorsal and arm skin	24
Polysorbate 60 (1% in DMEM)	Human patch test scored according to ICDRG. Patches were in place for 2 days in Haye's chambers. n=30.	Irritation score=0.4 out of 4.	49
Polysorbate 80 (100%)	Test substance administered for increasing time periods: 15 min-4 h and observed at 24, 48, and 72 h. n=29	l positive reaction. Control of 20% sodium dodecyl sulfate exhibited 24 of 29 reactions.	48
Polysorbate 80 (100%)	Test substance administered for increasing time periods to the upper outer arm in a 25 mm Hill Top Chamber: 15 min-4 h and observed at 24, 48, and 72 h. n=24	I positive reaction. Control of 20% sodium dodecyl sulfate exhibited 8 of 27 reactions.	50
Sorbitan monostearate, ethoxylated (25% aqueous)	10 drops of the solution administered to the scalp twice/d for 16 weeks. n=68	Irritation score 1 out of 68. Mild redness observed in 1 subject. Not irritating.	24

DMEM – Dulbecco's minimal essential medium; ICDRG - International Contact Dermatitis Research Group.

Table 13. Ocular irritation assays of some polysorbates.

Ingredient (concentration)	Assay	Results; notes	Reference
	Non-human		
Polysorbate 20 (10%)	Draize test using New Zealand White rabbits (n=3)	Maximal average score=0.7 out of 4; 24-h average score=0.0	52, 53
Polysorbate 81 (10% in light mineral oil)	Draize test using New Zealand White Rabbits (n=9)	Irritation score=0 out of 4; not irritating.	23
Polysorbate 81 (100%)	Draize test using New Zealand White Rabbits (n=9). Eyes were washed 2 sec after administration in 3 rabbits. Eyes were observed at 1, 24, 48, 72 h and 7 days.	Irritation score=0 out of 4; not irritating.	23
Sorbitan monostearate, ethoxylated (0.1 g in water)	Draize test using New Zealand White Rabbits (n=3)	Irritation score-0 out of 110; not irritating. Did not produce any eye irritation or any eye discharge throughout the 72-h observation period. No lesions such as pannus or staining were observed.	24
Sorbitan monolaurate, ethoxylated (100%; 0.1 mL)	Draize test using New Zealand White rabbits (n=9). Eyes were washed 2 sec after administration in 3 rabbits.	Irritation score=0 out of 4; not irritating.	22
	In vitro		
Polysorbate 20 (not provided)	EpiOcular test over 7 laboratories	Not predicted to be an ocular irritant. Average mean cell viability 97.40±6.49% of distilled water control.	55
Polysorbate 20 (2%)	Red blood cell hemolysis assay	Predicted to be a minimal ocular irritant.	51
Polysorbate 20 (2%)	K562 cell assay	Predicted to be a minimal ocular irritant.	51
Polysorbate 20 (5% in saline; 200 μL)	STE using SIRC cells (CCL-60). Exposure for 5 min.	Predicted to be an irritant.	54
Polysorbate 20 (100%; 50 μL)	EpiOcular assay	Predicted to be a non-irritant.	54
Polysorbate 20 (100%; 200 μL)	HET-CAM assay (Fertilized chicken eggs (white leghorn breed) with microscopic evaluation of hemorrhage, lysis, and coagulation at 0.5, 2, and 5 min.	Predicted to be an irritant.	54
	HET-CAM assay (Same as above but evaluation of	Predicted to be a severe irritant.	54
Polysorbate 20 (100%)	time to hemorrhage, lysis, and coagulation)	redicted to be a severe inflanc.	

BCOP=Bovine Corneal Opacity and Permeability assay; DMEM= Dulbecco's modified Eagle's medium; HET-CAM=Hen's Egg Test-Chorioallantoic Membrane assay; ICDRG=International Contact Dermatitis Research Group; STE=Short Time Exposure test.

REFERENCES

- Elder, RL. Final report on the safety assessment of polysorbates 20, 21, 40, 60, 61, 65, 80, and 85. Journal of the American College of Toxicology. 1984;3(5):1-82.
- 2. Andersen, FA. Final Report on the Safety Assessment of PEG-20 Sorbitan Cocoate; PEG-40 Sorbitan Diisostearate; PEG-2, -5, and -20 Sorbitan Isostearate; PEG-40 and -75 Sorbitan Lanolate; PEG-1 0, -40, -44, -75, and -80 Sorbitan Laurate; PEG-3, and -6 Sorbitan Oleate; PEG-80 Sorbitan Palmitate; PEG-40 Sorbitan Perisostearate; PEG-40 Sorbitan Peroleate; PEG-3, -6, -40, and -60 Sorbitan Stearate; PEG-20, -30, -40, and -60 Sorbitan Tetraoleate; PEG-60 Sorbitan Tetrastearate; PEG-20 and -160 Sorbitantriisostearate; PEG-18 Sorbitan Trioleate; PEG-40 and -50 Sorbitol Hexaoleate; PEG-30 Sorbitol Tetraoleate Laurate; and PEG-60 Sorbitol Tetrastearate-Addendum to the Final Report on the Safety Assessment of Polysorbates. *International Journal of Toxicology*. 2000;19(Suppl. 2):43-89.
- 3. Wenninger, JA, Canterbery, RC, and McEwen Jr, GN. International Cosmetic Ingredient Handbook and Dictionary. 8 *ed.* Washington, DC: Cosmetics, Toiletries, and Fragrance Association, 2000.
- Nikitakis, J and Breslawec HP. International Cosmetic Ingredient Dictionary and Handbook. 15 ed. Washington, DC: Personal Care Products Council, 2014.
- 5. Food and Drug Administration (FDA). Frequency of use of cosmetic ingredients. FDA Database. 2015. Washington, DC: FDA.
- Andersen, FA. Final report on the safety assessment of PEG-6, -8, and -20 sorbitan beeswax. *International Journal of Toxicology*. 2001;20(Suppl. 4):27-38.
- 7. Bergfeld, WF, Belsito, DV, Hill, RA, Klaassen, CD, Liebler, DC, Marks Jr, JG, Shank, RC, Snyder, PW, and Andersen, FA. Final report of the Cosmetic Ingredient Review Expert Panel: amended safety assessment of triethylene glycol and polyethylene (PEGs) -4, -6, -7, -8, -9, -10, -12, -14, -16, -18, -20, -32, -33, -40, -45, -55, -60, -75, -80, -90, -100, -135, -150, -180, -200, -220, -240, -350, -400, -450, -500, -800, -2M, -5M, -7M, -9M, -14M, -20M, -23M, -25M, -65M, -90M, -115M, -160M, and -180M and any PEG >= 4. Washington, DC, Cosmetic Ingredient Review. 2010. pp. 1-49.
- 8. Andersen, FA. Annual review of cosmetic ingredient safety assessments 2002/2003. *International Journal of Toxicology*. 2005;24(Suppl. 1):1-102.
- 9. Andersen, FA. Annual review of cosmetic ingredient safety assessments 2004/2005. *International Journal of Toxicology*. 2006;26(Suppl. 2):1-
- Bergfeld, WF, Belsito, DV, Hill, RA, Klaassen, CD, Liebler, DC, Marks Jr, JG, Shank, RC, Slaga, TJ, Snyder, PW, Andersen, FA, Burnett, CL, and Fiume, M. Final report: Plant-derived fatty acid oils as used in cosmetics. Washington, DC, Cosmetic Ingredient Review. 2011. pp. 1-100.
- Burnett, CL, Bergfeld, WF, Belsito, DV, Klaassen, CD, Marks Jr, JG, Shank, RC, Slaga, TJ, Snyder, PW, and Andersen, FA. Final report on the safety assessment of *Cocos nucifera* (coconut) oil and related ingredients. *International Journal of Toxicology*. 2011;30(Suppl 1):5S-16S
- 12. Elder, RL. Final report of the safety assessment for acetylated lanolin alcohol and related compounds. *Journal of Environmental Pathology and Toxicology*. 1980;4(4):63-92.
- 13. Elder, RL. Final report on the safety assessment of isostearic acid. Journal of the American College of Toxicology. 1983;2(7):61-74.
- Elder, RL. Final report on the safety assessment of candelilla wax, carnauba wax, Japan wax, and beeswax. *Journal of the American College of Toxicology*. 1984;3(3):1-41.
- 15. Elder, RL. Final report on the safety assessment of butyl stearate, cetyl stearate, isobutyl stearate, isocetyl stearate, isopropyl stearate, myristyl stearate, and octyl stearate. *Journal of the American College of Toxicology*. 1985;4(5):107-146.
- Elder, RL. Final report on the safety assessment of oleic acid, lauric acid, palmitic acid, myrisitic acid, and stearic acid. *Journal of the American College of Toxicology*. 1987;6(3):321-401.
- 17. Andersen, FA. Final report on the safety assessment of triethylene glycol and PEG-4. *International Journal of Toxicology*. 2006;25(Suppl 2):121-138.
- Bergfeld, WF, Belsito, DV, Hill, RA, Klaassen, CD, Liebler, DC, Marks Jr, JG, Shank, RC, Slaga, TJ, Snyder, PW, Andersen, FA, Fiume, M, and Heldreth, B. Amended safety assessment of alkyl esters as used in cosmetics. Washington, DC, Cosmetic Ingredient Review. 2013. pp. 1-82.
- Andersen, FA. Final report on the safety assessment of sorbitan caprylate, sorbitan cocoate, sorbitan disostearate, sorbitan dioleate, sorbitan distearate, sorbitan isostearate, sorbitan olivate, sorbitan sesquiisosotearate, and sorbitan triisostearate. *International Journal of Toxicology*. 2002;21(Suppl. 1):93-112.
- Bergfeld, WF, Belsito, DV, Hill, RA, Klaassen, CD, Liebler, DC, Marks Jr, JG, Shank, RC, Slaga, TJ, Snyder, PW, Gill, LJ, Fiume, M, and Heldreth, B. Safety assessment of sorbitan esters as used in cosmetics. Washington, DC, Cosmetic Ingredient Review. 2014. pp. 1-26.

- Elder, RL. Final report on the safety assessment of sorbitan stearate, sorbitan laurate, sorbitan sesquioleate, sorbitan oleate, sorbitan tristearate, and sorbitan trioleate. *Journal of the American College of Toxicology*. 1985;4(3):65-121.
- European Chemicals Agency (ECHA). Information on Chemicals-Sorbitan monolaurate, ethoxylated 9005-64 http://echa.europa.eu/information-on-chemicals. Last Updated 2015. Date Accessed 1-12-2015.
- European Chemicals Agency (ECHA). Information on Chemicals-Sorbitan monooleate, ethoxylated 9005-65-6. http://echa.europa.eu/information-on-chemicals. Last Updated 2015. Date Accessed 1-12-2015.
- European Chemicals Agency (ECHA). Information on Chemicals-Sorbitan monostearate, ethoxylated 9005-67-8. http://echa.europa.eu/information-on-chemicals. Last Updated 2015. Date Accessed 1-12-2015.
- Abrar, S. and Trathnigg, B. Characterization of commercial polysorbates using different chromatographic techniques. *Tenside, Surfactants, Detergents.* 2009;46(5):280-288.
- Snelling, JR., Scarff, CA., and Scrivens, JH. Characterization of Complex Polysorbate Formulations by Means of Shape-Selective Mass Spectrometry. Analytical Chemistry (Washington, DC, United States). 2012;84(15):6521-6529.
- 27. National Toxicology Program (NTP). 1,4-Dioxane, CAS No. 123-91-1. Research Triangle Park, NC, U.S. Department of Health and Human Services, Public Health Service. 2014. http://ntp.niehs.nih.gov/ntp/roc/content/profiles/dioxane.pdf.
- Food and Drug Administration (FDA). 1,4 Dioxane. http://www.fda.gov/cosmetics/productandingredientsafety/potentialcontaminants/ucm101566.htm. 10903 New Hampshire Ave, Silver Spring, MD 20993. Last Updated 7-3-2007. Date Accessed 9-17-2012.
- 29. Elder RL (ed). Final Report on the Safety Assessment of PEG-2, -6, -8, -12, -20, -32, -40, -50, -100, and -150 Stearates. JACT. 1983;2(7):17-34.
- 30. Personal Care Products Council. 12-23-2015. Concentration of Use by FDA Product Category: PEG-30 Sorbitan Beeswax. Unpublished data submitted by Personal Care Products Council. 1 pages.
- Personal Care Products Council. 8-16-2014. Concentration of Use by FDA Product Category: Polysorbate and Related Ingredients. Unpublished data submitted by Personal Care Products Council.
- Personal Care Products Council. 6-17-2015. Concentration of Use by FDA Product Category: PEG-4 Sorbitan Stearate. Unpublished data submitted by Personal Care Products Council.
- 33. Personal Care Products Council. 4-9-2015. Comments on the Tentative Report: Safety Assessment of Polysorbates as Used in Cosmetics.

 Unpublished data submitted by Personal Care Products Council.
- Bremmer HJ, Prud'homme de Lodder LCH, and van Engelen JGM. Cosmetics Fact Sheet: To assess the risks for the consumer; Updated version for ConsExpo. 2006. http://www.rivm.nl/bibliotheek/rapporten/320104001.pdf. Date Accessed 8-24-2011. Report No. RIVM 320104001/2006. pp. 1-77.
- Johnsen MA. The Influence of Particle Size. Spray Technology and Marketing. 2004;14(11):24-27. http://www.spraytechnology.com/index.mv?screen=backissues.
- Rothe H, Fautz R, Gerber E, Neumann L, Rettinger K, Schuh W, and Gronewold C. Special aspects of cosmetic spray safety evaluations: Principles on inhalation risk assessment. *Toxicol Lett.* 8-28-2011;205(2):97-104. PM:21669261.
- Rothe H. Special aspects of cosmetic spray safety evaluation. 2011. Unpublished information presented to the 26 September CIR Expert Panel. Washington D.C.
- 38. European Commission. CosIng database; following Cosmetic Regulation No. 1223/2009. http://ec.europa.eu/consumers/cosmetics/cosing/. Last Updated 2014. Date Accessed 4-21-0015.
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. 1974. http://www.inchem.org/documents/jecfa/jecmono/v05je47.htm.
- 40. Science Committee for Food. Food Science and Techniques: Reports of the Scientific Committee for Food. Luxembourg, European Commission. 1995. pp. 25-
- 41. Food and Drug Administration (FDA). Inactive Ingredient Database. http://www.accessdata.fda.gov/scripts/cder/iig/getiigWEB.cfm. Washington, DC. Last Updated 2015.
- 42. Choi, HG, Rhee, JD, Yu, BK, Kim, JA, Kwak, MK, Woo, JS, Oh, DH, Han, MJ, Choi, JY, Piao, M, and Yong, CS. The effect of enhancers on the penetration of albuterol through hairless mouse skin. *Yakche Hakhoechi*. 2006;36(5):321-329.
- Eskandani, M, Hamishehkar, H, Ezzati, N, and Dolatabadi, J. Cyto/Genotoxicity Study of Polyoxyethylene (20) Sorbitan Monolaurate (Tween 20). DNA and Cell Biology. 2013;32(9):498-503.

- 44. Gad, Shayne C., Cassidy, Crystal D., Aubert, Nicolas, Spainhour, Bart, and Robbe, Heide. Nonclinical vehicle use in studies by multiple routes in multiple species. *International Journal of Toxicology*. 2006;25(6):499-521.
- Gopinathan, S, O'Neill, E, Rodriguez, LA, Champ, R, Phillips, M, Mouraldeen, A, Wendt, M, Wilson, AGE, and Kramer, JA. In vivo toxicology
 of excipients commonly employed in drug discovery in rats. *Journal of Pharmacological and Toxicological Methods*.
 2013;68(2):284-295.
- Li, X, Wang, L, Li, Y, Ho, Y, Yang, D, Chen, Y, Hu, X, and Xue, M. Polysorbates as novel lipid-modulating candidates for reducing serum total cholesterol and low-density lipoprotein levels in hyperlipidemic C57BL/6J mice and rats. *European Journal of Pharmacology*. 2011;660(2-3):468-475.
- Galloway, SM, Bloom, AD, Resnick, M, Margolin, BH, Nakamura, F, Archer, P, and Zeiger, E. Development of a standard protocol for in vitro
 cytogenetic testing with Chines hamster ovary cells: Comparison of results for 22 compounds in two laboratories. *Environmental Mutagenisis*. 1985;7(1):1-51.
- 48. Basketter, D. A., York, M., McFadden, JP, and Robinson, M. K. Determination of skin potential in the human 4-h patch test. *Contact Dermatitis*. 2004;51(1):1-4.
- Lee, J. K., Kim, D. B., Kim, J. I., and Kim, P. Y. In vitro cytotoxicity tests on cultured human skin fibroblasts to predict skin irritation potential of surfactants. *Toxicology In Vitro*. 2000;14(4):345-349.
- Robinson, M. K, McFadden, JP, and Basketter, D. A. Validity and ethics of the human 4-h patch test as an alternative method to assess acute skin irritation potential. Contact Dermatitis. 2001;45(1):1-12.
- Lewis, R. W., McCall, J. C., and Botham, P. A. A comparison of two cytotoxicity tests for predicting the ocular irritancy of surfactants. *Toxicology In Vitro*. 1993;7(2):155-158.
- 52. Ohno, Y., Kaneko, T., Inoue, T, Morikawa, Y, Yoshida, T, Fujii, A, Masuda, M, Ohno, T, Hayashi, M, Momma, J, Uchiyama, T, Chiba, K, Ikeda, N, Imanishi, Y, Itakagaki, H, Kakishima, H, Kasai, Y, Kurishita, A, Kojima, H, Matsukawa, K, Nakamura, T, Ohkoshi, K, Okumura, H, Saijo, K, Sakamoto, K, Suzuki, T, Takano, K, Tatsumi, H, Tani, N, Usami, M, and Watanabe, R. Interlaboratory validation of the in vitro eye irritation test for cosmetic ingredients. (1) Overview of the validation study and Draize scores for the evaluation of the test. *Toxicology In Vitro*. 1999;13(1):73-98.
- Okamoto, Y., Ohkoshi, K., Itagaki, H., Tsuda, T., Kakishima, H., Ogawa, T., Kasai, Y., Ohuchi, J., Kojima, H., Kurishita, A., Kaneko, T.,
 Matsushima, Y., Iwabuchi, Y., and Ohno, Y. Interlaboratory validation of the in vitro eye irritation tests for cosmetic ingredients. 3.
 Evaluation of the hemolysis test. *Toxicology In Vitro*. 1999;13(1):115-124.
- 54. Hayashi, K, Mori, T, Abo, T, Ooshima, K, Hayashi, T, Komano, T, Takahashi, Y, Sakaguchi, H, Takatsu, A, and Nishiyama, N. Two-stage bottom-up tiered approach combining several alternatives for identification of eye irritation potential of chemicals including insoluble or volatile substances. *Toxicology In Vitro*. 2012;26(7):1199-1208.
- 55. Pfannenbecker, U., Bessou-Touya, S., Faller, C., Harbell, J., Jacob, T., Raabe, H., Tailhardat, M., Alepee, N., De Smedt, A., De Wever, B., Jones, P., Kaluzhny, Y., Le Varlet, B., McNamee, P., Marrec-Fairley, M., and Van Goethem, F. Cosmetics Europe multi-laboratory prevalidation of the EpiOcular reconstituted human tissue test method for the prediction of eye irritation. *Toxicology In Vitro*. 2013;27(2):619-626.
- 56. Food and Drug Administration (FDA). Frequency of use of cosmetic ingredients. FDA Database. Washington, DC: FDA.
- 57. Burnett, CL, Fiume, M, Bergfeld, WF, Belsito, DV, Klaassen, CD, Marks Jr, JG, Shank, RC, Slaga, TJ, Snyder, PW, and Andersen, FA. Final report: derived fatty acid oils as used in cosmetics. Washington, DC, Cosmetic Ingredient Review. 2011. pp. 1-100.
- 58. Elder, RL. Final report on the safety assessment of coconut oil, coconut acid, hydrogenated coconut acid, and hydrogenated coconut oil. *Journal of the American College of Toxicology.* 1986;5(3):103-121.
- Nikitakis, JM and McEwen Jr, GN. CTFA Compendium of Cosmetic Ingredient Composition Specifications. Washington, DC: Cosmetic, Toiletry, and Fragrance Association, 1990.
- National Institutes of Health, National Institute of Environmental Health Service. Chemical Effects in Biological Systems Polysorbate 20 -M910077; CASRN: 9005-64-5. http://ntp.niehs.nih.gov/testing/status/agents/ts-m910077.html. Last Updated 2015. Date Accessed 1-21-2015.
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Combined compendium of food additive specifications: polyoxyethylene (20) sorbitan monolaurate. http://www.fao.org/ag/agn/jecfa-additives/index.html. Last Updated 2015. Date Accessed 4-21-2015.
- McCutcheon's Detergents and Emulsifiers. North American Edition ed. Ridgewood, NJ: Allured Published Corporation; McCutcheon's Division, 1973.
- 63. Estrin, NF. CTFA Standards: Cosmetic Ingredient Descriptions. Washington, DC: Cosmetic, Toiletry, and Fragrance Association, 1974.
- Japan Cosmetic Industry Association (JCIA). Tokyo, Yakuji Nippo, Ltd. 1979.

- 65. The United States Pharmacopeia. 19 ed. Rockville, MD: United States Pharmacopeial Convention, 1975.
- 66. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Combined compendium of food additive specifications: polyoxyethylene (20) sorbitan monopalmitate. http://www.fao.org/ag/agn/jecfa-additives/index.html. Last Updated 2015. Date Accessed 4-21-2015.
- Mittal, KL. Determination of CMC (critical micelle concentration) of polysorbate 20 in aqueous solution by surface tension method. *Journal of Pharmaceutical Sciences*. 1972;61(8):1334-1335.
- 68. Nikitakis, JM and McEwen Jr, GN. CTFA compendium of Cosmetic Ingredient Composition. Washington, DC: Cosmetic, Toiletry, and Frangrance Association, 1990.
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Combined compendium of food additive specifications: polyoxyethylene (20) sorbitan monostearate. http://www.fao.org/ag/agn/jecfa-additives/index.html. Last Updated 2015. Date Accessed 4-21-2015.
- 70. Food Chemicals Codex. Washington, DC: National Academy of Sciences, 1972.
- 71. Greenberg, LA and Lester, D. Handbook of Cosmetic Materials. New York: Interscience Publishers, 1954.
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Combined compendium of food additive specifications: polyoxyethylene (20) sorbitan tristearate. http://www.fao.org/ag/agn/jecfa-additives/index.html. Last Updated 2015.
- 73. Grant, J. Hackh's Chemical Dictionary. 4 ed. New York: McGraw-Hill Book Company, 2015.
- 74. Windholz, M. The Merck Index. 9 ed. Rahway, NJ: Merck and Company, 1976.
- 75. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Combined compendium of food additive specifications: polyoxyethylene (20) sorbitan monoleate. http://www.fao.org/ag/agn/jecfa-additives/index.html. Last Updated 2015.
- National Institutes of Health, National Institute of Environmental Health Service. Chemical Effects in Biological Systems Polysorbate 80 -M910077; CASRN: 9005-65-6. http://ntp.niehs.nih.gov/testing/status/agents/ts-10122-n.html. Last Updated 2015. Date Accessed 1-20-2015.
- 77. Nikitakis, JM and McEwen Jr, GN. CTFA Compedium of Cosmetic Ingredients Composition Descriptions II. Washington, DC: Cosmetic, Toiletry, and Fragrance Association, 1990.